Search results

Search for "solar light" in Full Text gives 48 result(s) in Beilstein Journal of Nanotechnology.

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • electrons can be excited into the conduction band when illuminated by UV light with wavelengths lower than 380 nm [20][21][22]. Since the solar-light spectrum contains only around 4% of UV light, TiO2 is not efficient under solar-light illumination. Different studies have been performed to increase its
PDF
Album
Full Research Paper
Published 04 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • rate of recombination of photogenerated charge carriers and high photocorrosion affinity in the presence of solar light [193][194][195]. The coupling of CdS with another semiconductor is a suitable strategy to overcome these restrictions [196]. When CdS is loaded onto TiO2, the surrounding matrix of
PDF
Album
Review
Published 16 May 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • orthorhombic GeAs2 is in agreement with our calculated result for the bulk material [5]. The ability of a GeAs2 monolayer to harvest solar light in the visible region is higher, both in absorption intensity and in the range of wavelengths covered, than that of SiAs2. This is shown in Figure 4, which shows the
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • photocatalysts by a two-step synthetic method. The improved photocatalytic degradation of phenol could be achieved under simulated solar light irradiation. Herein, we report a new, facile method to produce the ZnO/BiOI heterojunction by a solution method followed by calcination. Using a milder precipitant
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • semiconductor structures are also promising and interesting materials for photocatalytic utilization, in particular relating to the solar light spectrum. It is also worth mentioning that, in fact, there are numerous works that have investigated the photocatalytic activity of these structures based on
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • in the literature [32][33]. Xian and coworkers have studied the photocatalytic degradation of MO under simulated solar light irradiation in BaTiO3–g-C3N4 composites with an efficient charge separation of photogenerated charge carriers at the interfaces [30]. Leong et al. have successfully made a
  • heterojunction presents a combination of the spectral features of g-C3N4 and CT, showing absorption both in the UV (3.22 eV) and visible regions (2.79 eV). The combination of these two materials may result in an effective photocatalyst that can absorb a larger part of the solar light spectrum, encompassing both
  • irradiation under sunlight ≈47% degradation of BPA could be observed using the CTCN heterojunction as catalyst, while the control experiments performed without any catalyst showed no degradation. Thus, it can be concluded that the as-prepared heterojunction photocatalyst has favorable solar light harvesting
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • the scientific community. To exploit solar light more efficiently, photocatalysts with narrow band gap (e.g., ZnSnO3 [2], Bi2WO6 [3], Ce(MoO4)2 [4] and ZnFe2O4 [5]) have been used, for absorbance of solar light in the visible region. Among ternary metal oxides, transition metal ferrites have drawn a
  • great attention in the field of photocatalysis. The reasons are the absorption of a maximum fraction of solar light, and specific optoelectronic and magnetic properties [6][7][8][9]. Metal ferrites exhibit a spinel-like structure having the general formula of MFe2O4 (M = Zn, Cu, Ni, Mn, Co) and are
  • been carried out to investigate the photocatalytic decolourization of organic dyes (Congo red and Rh B) under solar light irradiation. Experimental Fe(NO3)3·9H2O (98%, Merck), Zn(NO3)2·6H2O (98%, Lobachemie) and urea (99.5%, Spectrochem) were used directly without any further purification. Synthesis of
PDF
Album
Full Research Paper
Published 05 Feb 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • mediator and acceptor and increasing adsorption [33][34]. Therefore, g-C3N4 could be combined with CDs to overcome the solubility problem of CDs and to boost the performance of g-C3N4. Besides, the CDs can also act as photosensitizers to harvest a wide spectrum of solar light to achieve efficient daylight
  • ) between 11:00 a.m. and 1:00 p.m. in May 2017. The solar light intensity was measured using a LT Lutron LX-101 lux meter of 1000 × 100 and the average light intensity over the duration of the clear sky weather conditions was found to be 89,200 lux. Table S3 (Supporting Information File 1) showed the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • importance. As one of the Ag-containing semiconductor materials, AgSCN exhibits superior stability under irradiation [23][24]. The relatively large bandgap of AgSCN (3.4 eV) makes it only ultraviolet light active, largely limiting the wide utilization of the solar light energy spectrum. The addition of Ag on
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

  • Fakher Laatar,
  • Hatem Moussa,
  • Halima Alem,
  • Lavinia Balan,
  • Emilien Girot,
  • Ghouti Medjahdi,
  • Hatem Ezzaouia and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 2741–2752, doi:10.3762/bjnano.8.273

Graphical Abstract
  • simulated solar light source (light intensity = 5 mW/cm2). A polycarbonate filter was added for experiments conducted under visible light irradiation (light intensity = 10 mW/cm2). In a typical experiment, 50 mg of the CdSe/TiO2 composite were dispersed in 50 mL of aqueous solution of RhB (10 mg/L) in a 70
  • the surface of CdSe NRs was not oxidized into CdO during the calcination step. The signals of Cd 3d5/2 at ≈403.2 eV for CdO [50] and Se 3p3/2 at 165.1 eV for SeO2 [51] were not detected in the XPS spectra of the CdSe (2 wt %)/TiO2 composite. Solar light photocatalytic activity of CdSe/TiO2 composites
  • The photocatalytic decomposition of RhB at pH 7 over TiO2 nanoparticles and CdSe/TiO2 composites under simulated solar light irradiation was first evaluated (light intensity: 5 mW/cm2). Before illumination, the adsorption/desorption equilibrium was established for 45 min. In the absence of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2017

Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

  • Xin Zhao and
  • Zhong Chen

Beilstein J. Nanotechnol. 2017, 8, 2640–2647, doi:10.3762/bjnano.8.264

Graphical Abstract
  • . Photoelectrochemical (PEC) water splitting generates hydrogen through chemical reactions assisted by photo-generated electrons and holes in semiconductor materials [1][2][3]. An ideal semiconductor for PEC water splitting requires a small bandgap to capture enough solar light, a high conversion efficiency, a good
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • 20–30 nm up to 100 nm simply by changing the titania precursor concentration. These as-prepared materials have significant absorption in the UV and visible range and therefore have high potential for applications in solar-light-driven photocatalysis and photovoltaics. In addition, we show for the
  • . Fabricated core–shell nanostructures have significant extinction in the UV and visible range and therefore should be of great interest for applications in solar-light-driven photocatalysis and photovoltaics. In the future, studies will be carried out to further optimize reaction conditions toward coating
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • extinction coefficient (ε) of the metal-to-ligand charge transfer (MLCT) band, a poor absorption in the near-infrared (NIR) range of the solar light and the toxicity are well-documented limitations of these Ru photosensitizers [12]. As an alternative to Ru dyes, less toxic and less expensive organic dyes are
  • acceptor SQ2. DSSCs have been fabricated by co-sensitizing the photoanodes with mixtures of the two dyes to achieve a reasonably good combined absorption solar light by these two dyes. The I–V measurement data exhibit a higher efficiency for the co-sensitized DSSCs than for the single-dye-sensitized DSSCs
PDF
Album
Full Research Paper
Published 17 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

ZnO nanoparticles sensitized by CuInZnxS2+x quantum dots as highly efficient solar light driven photocatalysts

  • Florian Donat,
  • Serge Corbel,
  • Halima Alem,
  • Steve Pontvianne,
  • Lavinia Balan,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2017, 8, 1080–1093, doi:10.3762/bjnano.8.110

Graphical Abstract
  • nanoparticles exhibit a high photocatalytic activity under simulated solar light irradiation for the degradation of Orange II dye (>95% degradation after 180 min of irradiation at an intensity of 5 mW/cm2). The heterojunction built between the ZnO nanoparticle and ZCIS QDs not only extends the light adsorption
  • bandgap (≈3.2–3.3 eV) restricts light activation to the UV range (which accounts for only ≈4% of the solar spectrum) for the generation of the charge carriers responsible for the surface redox reactions. To improve the efficient use of solar light, visible-light-responsive photocatalysts should be
  • solar light irradiation was demonstrated. The ZnO/ZCIS photocatalyst was found to possess high stability and could be reused at least ten times without significant loss of activity. Additionally, it was found to be only weakly sensitive to interfering substances such as salts present in the aqueous
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • an amine function (dopamine). The photodegradation experiments for these model pollutants were performed under ambient conditions, under UV irradiation with low intensity (ca. 8 mW/cm2) to imitate the UV radiation from solar light, as well as under irradiation with visible light. The degradation
PDF
Album
Full Research Paper
Published 27 Jan 2017

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • dye could be achieved within 60 min, when the CdS–ZnO–RGO ternary nanocomposite was used as the photocatalyst, which is 30 min shorter than under the simulated solar light. Similarly, within 60 min the CdS–ZnO binary nanocomposite degraded about 70% of the dye, while it took about 90 min under the
PDF
Album
Full Research Paper
Published 11 Nov 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity for the degradation of the Orange II dye under solar light irradiation. The high photocatalytic activity is ascribed to the
  • no marked detrimental effect on the photocatalytic activity was observed. Finally, recyclability experiments demonstrate that ZnO:Ce rods are a stable solar-light photocatalyst. Keywords: Ce doping; photocatalysis; solvothermal synthesis; ZnO rods; Introduction Due to the increasing pollution of
  • /L concentration. Initial control experiments showed that (i) solar light irradiation (5 mW/cm2) in the absence of any photocatalyst does not bleach Orange II and (ii) that the concentration of Orange II remained quite unchanged in the presence of the photocatalyst without light irradiation. As can
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • ; solar light; Review Introduction The increasing energy demand as well as the serious environmental contamination caused by the usage of fossil fuels give rise to the necessity to develop clean alternative fuels. Hydrogen, as a pollution-free and storable energy fuel, is a promising substitute of fossil
PDF
Album
Review
Published 09 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • dipole–dipole interaction between the gold core and the Cu2O semiconductor shell. Plasmonic metal nanostructures have been incorporated into different transition metal oxides to enhance the solar-light harvesting and the energy-conversion efficiency for the photoelectrochemical water splitting. For
  • role of a co-catalyst, which may act as electron sinks to draw them away from the holes and enhance their lifetimes [64]. Under visible light, the plasmonic nanostructures enhance the solar-light harvesting and increase the visible-light energy-conversion efficiency as photosensitizer. It is well-known
PDF
Album
Review
Published 23 May 2014

Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

  • Difa Xu,
  • Shaowen Cao,
  • Jinfeng Zhang,
  • Bei Cheng and
  • Jiaguo Yu

Beilstein J. Nanotechnol. 2014, 5, 658–666, doi:10.3762/bjnano.5.77

Graphical Abstract
  • solar light. Therefore, the development of visible-light-driven photocatalysts has received considerable attention as visible light (400–800 nm) is abundant in the solar spectrum [12][13][14][15][16]. Some semiconductors such as BiVO4 [17][18][19], Bi2O3 [20][21], Fe2O3 [22][23][24][25], and Cu2O [26
PDF
Album
Full Research Paper
Published 19 May 2014

Quantum size effects in TiO2 thin films grown by atomic layer deposition

  • Massimo Tallarida,
  • Chittaranjan Das and
  • Dieter Schmeisser

Beilstein J. Nanotechnol. 2014, 5, 77–82, doi:10.3762/bjnano.5.7

Graphical Abstract
  • size effects; titanium dioxide (TiO2); water splitting; X-ray absorption spectroscopy (XAS); Introduction Titanium dioxide (TiO2) is an important material for the photoelectrolysis of water [1] and for many other photocatalytic reactions [2]. Its effective conversion of solar light, although limited
PDF
Album
Full Research Paper
Published 22 Jan 2014

Distribution of functional groups in periodic mesoporous organosilica materials studied by small-angle neutron scattering with in situ adsorption of nitrogen

  • Monir Sharifi,
  • Dirk Wallacher and
  • Michael Wark

Beilstein J. Nanotechnol. 2012, 3, 428–437, doi:10.3762/bjnano.3.49

Graphical Abstract
  • -groups; such material shows a high proton conductivity [27] and has potential to create proton-conducting hybrid membranes for applications in fuel cells [28][29], electrodialysis for water purification [30], or photoelectrochemical cells for water splitting with solar light in order to separate the
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2012
Other Beilstein-Institut Open Science Activities