Search results

Search for "volatile organic compounds" in Full Text gives 34 result(s) in Beilstein Journal of Nanotechnology.

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • determination of the concentration of volatile organic compounds (VOC). Therefore, with the wide usage of VOC, especially BTEX, there is a strong need for the development of new sensors that could easily, precisely and quickly determine VOC and their concentration. One of the examples for a VOC sensor is a
PDF
Album
Full Research Paper
Published 04 May 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • volatile organic compounds (VOCs) have received considerable attention. FOCSs for VOCs are generally based on indirect sensing schemes, depending on the wavelength, refractive index or fluorescence of an immobilized indicator probe or an optically detectable label that can be monitored [1][2][3][4][5][6
PDF
Album
Full Research Paper
Published 21 Feb 2017

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

  • Urmas Joost,
  • Andris Šutka,
  • Meeri Visnapuu,
  • Aile Tamm,
  • Meeri Lembinen,
  • Mikk Antsov,
  • Kathriin Utt,
  • Krisjanis Smits,
  • Ergo Nõmmiste and
  • Vambola Kisand

Beilstein J. Nanotechnol. 2017, 8, 229–236, doi:10.3762/bjnano.8.25

Graphical Abstract
  • -toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying
  • cost-effective colorimetric gas sensing system utilizing the absorption of the analyte into a PTSA-modified thin film based on TiO2 NPs. Volatile organic compounds absorb into the PTSA surrounding the nanoparticles, and subsequently cause a significant swelling of the films. Thus, the optical path
  • metal-organic framework containing colloidal silica crystals [7]. The current sensor system, which is simpler and also cheaper to fabricate, gives a peak shift of approximately 4 nm in this concentration range. The color of TiO2 NPs thin films changes here after the absorption of volatile organic
PDF
Album
Full Research Paper
Published 24 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • nanorods; Introduction Hydrocarbons (HCs) are molecules consisting of carbon and hydrogen atoms, and the gaseous species can be present in the atmosphere depending on their volatility or vapor pressure. As volatile molecules in the atmosphere, they are classified as volatile organic compounds (VOCs). The
PDF
Album
Full Research Paper
Published 10 Jan 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • ]. The oxide-based semiconductor sensors have been used worldwide to detect toxic, hazardous and combustible gases (e.g., C2H5OH, H2S, H2, various hydrocarbons, volatile organic compounds) for the safety of humans and for a better control over the surrounding environment [1][2][3]. Thin layers of metal
PDF
Album
Full Research Paper
Published 22 Dec 2016

Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies

  • Giovanna Testa,
  • Laura Fontana,
  • Iole Venditti and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1822–1828, doi:10.3762/bjnano.7.175

Graphical Abstract
  • suspensions and the potential applications in biotechnology, for example, in the case of mercaptosuccinic acid [28] and ammonium bearing thiols, such as trimethyl(11-mercaptoundecyl)ammonium [29]. Pt nanoparticles stabilized with 11-mercaptoundecanoic acid were developed for the detection of volatile organic
  • compounds (VOCs) [30]. In this study, the synthesis and characterization of functionalized platinum nanoparticles has been investigated. PtNPs were obtained by a wet redox procedure, using 2-diethylaminoethanethiol hydrochloride (DEA) as a capping agent. By varying the Pt/thiol molar ratio, stable
PDF
Album
Full Research Paper
Published 24 Nov 2016

Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications

  • Guillaume Rioland,
  • Patrick Dutournié,
  • Delphine Faye,
  • T. Jean Daou and
  • Joël Patarin

Beilstein J. Nanotechnol. 2016, 7, 1761–1771, doi:10.3762/bjnano.7.169

Graphical Abstract
  • water and volatile organic compounds thanks to their great adsorption abilities [3]. The French Space Agency (CNES) studied zeolites for the adsorption of volatile organic compounds in satellites [4][5][6][7][8]. Zeolites are aluminosilicate materials with micropores. They are the result of a
PDF
Album
Full Research Paper
Published 18 Nov 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • , Via Valotti 9, 25133 Brescia, Italy Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA 10.3762/bjnano.7.133 Abstract A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The
  • monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds. Keywords: chemical sensors; reduced graphene oxide (RGO); volatile organic compounds; zinc oxide (ZnO); Introduction Hazard analysis of critical control point (HACCP
  • selective breath marker and the presence of its certain concentrations in breath can reflect metabolic products of diabetes [3]. Due to the development of chemical industries acetone is one of the most commonly used volatile organic compounds (VOCs) and can cause dangerous health issues such as blindness
PDF
Album
Full Research Paper
Published 10 Oct 2016

Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

  • Hamdi Baccar,
  • Atef Thamri,
  • Pierrick Clément,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2015, 6, 919–927, doi:10.3762/bjnano.6.95

Graphical Abstract
  • organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic
  • compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. Keywords: gas and vapour sensing; metal decoration
  • ; mutiwalled carbon nanotubes; plasma treatment; sputtering; Introduction Volatile organic compounds (VOCs), nitrogen oxides (NOx) and hydrogen sulphide are among the most dangerous pollutants released each year by industry into the environment [1][2][3]. Some VOCs have very harmful effects on human and
PDF
Album
Full Research Paper
Published 09 Apr 2015
Other Beilstein-Institut Open Science Activities