Search results

Search for "Ni" in Full Text gives 356 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • ]. The most commonly used material in resistive switching devices is TiO2−x [33][34][35][36][37][38]. In addition to the oxide layers, the material used for metal electrodes plays another crucial role in the resistive switching mechanism. Usually, materials such as Au, Ag, Ni, Ti, W, TiN, or ITO are used
PDF
Album
Full Research Paper
Published 24 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • nanoscale is crucially important. Microscale bearings made of Ni-based MGs lasted four times longer than those machined from sintered alloy [12]. Corrosive degradation, as one of the major failure mechanisms of metals and alloys, is an important issue in engineering applications of MGs. Protective oxide
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • these are commercially available, have comparatively high vapor pressure and are fairly stable and easy to handle. Correspondingly metal carbonyl complexes, including the mononuclear Ni(CO)4, Cr(CO)6, Fe(CO)5, W(CO)6 and Mo(CO)6, have been used as precursors to deposit metals on surfaces through FEBID
PDF
Album
Full Research Paper
Published 04 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • (MFe2O4, where M = Fe, Co, Ni, or Zn) nanoparticles (NPs) were developed as carriers of the anticancer drugs doxorubicin (DOX) and methotrexate (MTX). Physical characterizations confirmed the formation of pure cubic structures (14–22 nm) with magnetic properties. Drug-loaded NPs exhibited tumor
  • adverse interactions with hemoglobin [13]. Magnetic spinel ferrites nanoparticles (MSFNPs) with a general formula of MFe2O4 (where M = divalent cation of Co, Ni, Zn, Mn, or Mg) are soft magnetic materials with a face-centered cubic structure [14]. Among those, cobalt ferrite NPs have a large
  • chemistry of NPs, thereby affecting their physiochemical and biological properties [11][20]. In the present work, we synthesized a variety of MFe2O4 (M = Co, Ni, and Zn) NPs using the sonochemical technique. Particle agglomeration was prevented by using oleic acid as the surfactant [21]. Phase change of
PDF
Album
Full Research Paper
Published 02 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • fractal dimension of 1.79. Tungsten oxide-based fractals A very recent study on the sensing of NO2, acetone, and carbon monoxide was reported by Simon and co-workers. They used Ni nanoparticles to decorate a reduced graphene oxide/WO3 nanocomposite [78]. The WO3 sample annealed at 600 °C shows the
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • cancer cells [50]. Furthermore, naphthalimide (NI) derivatives can also be used as end-capping materials for amino acids. Naphthalimide has unique photophysical properties and photostability as a luminescent material for aggregation-induced emission (AIE), which can display high emission properties in
  • the aggregated state and can be used for imaging [51]. Importantly, NI exhibits hydrophobicity and π–π stacking due to the aromatic moieties, and is prone to dynamic aggregation, which can be used in self-assembled construction units [52]. For example, Hsu et al. [53] self-assembled NI and
  • phenylalanine to produce hydrogels driven by hydrogen bonds and π–π interactions and to form microfiber three-dimensional networks at 1 wt % and pH 7.4. The microfibers have AIE properties and strong blue emission under an ultraviolet lamp. Ni-terminated hydrogels of NI-Phe exhibit viscoelasticity with a
PDF
Album
Review
Published 12 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • ensembles of particles, these two descriptions are identical. The Boltzmann entropy S is given by S = k·ln(W), with k the Boltzmann constant. For an ensemble consisting of N elements subdivided in I groups, each one consisting of ni elements, the number of possibilities W is described as: In the further
  • discussions, for simplicity, instead of the entropy S, a reduced entropy S* = S/k is used. After applying Stirling’s equation, for large numbers of particles, the Boltzmann entropy may be rewritten as: Setting ni/N = pi, one obtains the Gibbs entropy of mixing: Equation 2 and Equation 3 demonstrate that, in
  • , the approximation with an exponential function Ni = a·exp(−bi), where a and b are parameters describing the distribution function, is depicted. The variable i stands for the volume of the particles in multiples of the initial particle size. Except for particle numbers of less than 20 one realizes a
PDF
Album
Full Research Paper
Published 29 Sep 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • various metal nanostructures for improved performance. Figure 3 presents optical images of GaN-based blue LED and UV LED with different current-spreading layers (ITO, Ni on graphene, and graphene) [42]. For a particular injection current value, the turn-on voltages for blue LED recorded on various anodes
  • were 3.5 (ITO), 6.2 (graphene), and 4.8 V (Ni on graphene). However, for UV LED, the observed operating voltage reduced significantly from 13.2 (graphene) to 7.1 V (Ni on graphene). Even though the ITO anode remained superior, the Ni–graphene nanocomposite nevertheless displayed 83% of the EL intensity
  • under different current-spreading layers (ITO, Ni on graphene, and graphene) at 1 and 20 mA current injections, respectively. Figure 3a and Figure 3b were adapted from [42], with the permission of AIP Publishing. This content is not subject to CC BY 4.0. (a) EL spectra of LED having 2 and 5 nm Au–CNT
PDF
Album
Review
Published 24 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • capacity of these electrodes depends on two mechanisms, the deposition/stripping of Na and the insertion/extraction of Na+. Metal scaffolds and meshes fabricated from Cu, Ni, Ni@Cu, or Al are other materials onto which Na can be plated. As shown in a recent work, porous Ni structures formed on Cu foil
  • served as 3D current collector for plating Na [71]. Porous Al current collectors are also interesting Na plating substrates due to the lower weight and cost of Al compared to Cu and Ni. The resultant Al/Na anodes displayed high cycle stability (1000 cycles) with minimal Coulombic efficiency loss [72
  • intermetallic compounds (M-Sn/Sb/P with M = Sn, Sb, P, Si, Bi, Cu, Ni, Fe, Zn). Fully sodiated Sb, Sn, and P form the phases Na3Sb, Na15Sn4, and Na3P, which offer theoretical capacities of 660, 847 and 2596 mAh·g−1, respectively [73]. However, the measured values are usually somewhat lower due to cycle
PDF
Album
Review
Published 09 Sep 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • of Ni [24] and Cu [27] in AAO templates. Cross-sectional SEM images were used for the estimation of the position of the main growth front of nanowires (see dashed red lines in Figure 2c–e) at the final stage of the templated electrodeposition. It can be seen that the main growth front is below the
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • successfully employed hBN to investigate the pristine properties of particular molecules. Schaal et al. [86] showed that hBN on Ni(111) electronically decoupled tetraphenyldibenzoperiflanthene such that the molecular vibronic progression was observable by in situ differential reflectance spectroscopy, which is
  • otherwise only achieved for multilayers on the bare Ni. On hBN/Cu(111), Zimmermann et al. [87] could visualize the molecular orbitals of pyrene derivatives by STM at the submolecular level, while Brülke et al. [88] measured the fluorescence of monolayer perylenetetracarboxylic dianhydride (PTCDA), which is
PDF
Editorial
Published 23 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • polydomain state, which triggers the flux-flow phenomenon. With further increase of the field, the polydomain state gradually turns into the opposite P state. This picture is consistent with the assessment based on the Hall effect, Figure 1i, and MR analysis, Figure 2, and with earlier FORC analysis of Ni
PDF
Album
Full Research Paper
Published 17 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • nanoplatelets (GNPs) in a copper matrix the in-plane tensile strength was increased by 26% [17]. Li et al. used graphene nanoplatelets decorated with Ni nanoparticles as addition in a Cu matrix. These Ni-GPL/Cu composites exhibited a 42% increase in ultimate tensile strength (UTS) over that of pure Cu, with
  • only 0.8 vol % of Ni-GPLs [18]. Jiang et al. demonstrated that a pristine graphene (PG)/Cu composite showed a 90% enhancement of yield strength, and 81% increase of compression strength compared to pure copper [19]. Graphene is regarded as a reinforcement component in composites; it has been confirmed
PDF
Album
Full Research Paper
Published 12 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • well-controlled adsorption and electronic properties [11][12][13][14][15][16][17][18]. In such systems, h-BN shows a rich structural and electronic morphology, which depends on the lattice mismatch and the interaction strength with the substrate: Large and flat lattice-matched terraces for h-BN/Ni(111
PDF
Album
Letter
Published 17 Jun 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • the interlayers of PCN and not on its π-conjugated planes as it is in the case with other commonly used metal/non-metal (Cu, Ni, C, N or O) modifications [42][43][44][45][46]. Fourier-transform infrared (FTIR) spectroscopy was used to obtain the molecular structure information of the carbon nitride
PDF
Album
Full Research Paper
Published 19 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • AgNPs, adding new features to the nanoparticles. For example, with the addition of nickel or iron in the production of bimetallic silver nanoparticles, Ag@Ni or Ag@Fe, respectively [42], the nanoparticles acquire magnetic properties. These magnetic nanoparticles have the potential to be used in
  • polyvinylpyrrolidone The polyol synthesis was presented by Fievét et al. (1989) as a versatile synthesis route for various metallic and bimetallic nanoparticles, viz. Ag, Au, Cu, Co, Ni, Pd, Pt, CoNi, and FeNi with the possibility to obtain different shapes and sizes [139][140]. In this process, a suitable solid
PDF
Album
Supp Info
Review
Published 14 May 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • –carbon composite (Ni@rGO). Previous work with WO3 had used either NiO (as part of the WO3 lattice), solely carbon, Pd-surface decorated WO3 (Pd@WO3), or Pd or Pt@carbon@WO3. We demonstrate the gas response for pure WO3, rGO/WO3 and Ni@rGO/WO3 sensing elements towards NO2 and acetone in air as well as
  • towards CO in N2. The addition of 0.35 wt % Ni@rGO composite to WO3 enables the increase of the sensory response by more than 1.6 times for NO2 vapors. The gas response towards acetone using 0.35 wt % Ni@rGO/WO3 composite was 1.5 times greater for 3500 ppm than for 35,000 ppm acetone. For 0.35 wt % Ni@rGO
  • , formation of heterojunctions, or size reduction [18][19]. Doping of WO3 with nickel improves the humidity sensing compared to neat WO3. Attributed to a greater number of electrons donated by Ni atoms, higher surface area, and smaller bandgap energy, Ni-doped WO3 has a faster response, higher sensitivity
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • the silkworm fat body. The treatment with TiO2 NPs activated the insulin signaling pathway of the silkworm by enhancing the metabolism of carbohydrates, proteins, and fat when compared to the control group. Ni et al. [120] reported that feeding silkworm larvae with 5 g/mL of TiO2 NPs led to the
PDF
Album
Review
Published 12 Feb 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • (NTA) terminal groups for the interaction with the His-tagged PMs forming a quasi-monolayer of His-tagged PM on top of the CNM-NTA. The formation of the Ni-NTA/His-tag complex leads to the unidirectional orientation of PM on the CNM substrate. Electrophoretic sedimentation was employed to optimize the
  • is essentially one monolayer of PM patches on the CNM, but the coverage is less than 100% and in some regions irregularly arranged PM patches overlap. Immobilization of PM was achieved by complex formation of nickel(II) nitrilotriacetic acid (Ni-NTA), coupled to the NBPT CNM, with the C-terminal
  • reduced to 2 mm for electrophoretic experiments (drop was in contact with both plates). Since WT PM is negatively charged on both sides, the substrate plate was chosen as the positive pole of the capacitor to attract the PM sheets. To enhance binding the positively charged side of c-His PM to the Ni-NTA
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • ). The particles have an elongated shape, expanding longitudinally in the available hollow space. In the transverse direction, the particle is restricted by the walls of the MWCNTs. The residual Ni, left in the MWCNTs due to the adapted preparation method, are attracted to the particles inside the MWCNTs
  • ) carbon, (e) manganese, (f) iron, (g) nickel (the source of Ni is the original MWCNTs used as catalyst), and (h) overlays of MnFe2O4/MWCNTs. The arrows in (a) and (b) are pointing at MWCNTs layers, which are coating the partially encapsulated nanoparticles. (i–l) The majority of the MnFe2O4 nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • , the electron–hole recombination can be inhibited by loading metals, such as Ni [12], V, Fe [13], Ag [14], and Cu–Ni [15], on the TiO2 surface, which accelerates the formation of hydroxyl radicals and, consequently, improves the photocatalytic activity of TiO2. In contrast, the doping of TiO2 with
  • optical properties The three-step synthesis involved the generation of the SiO2 spheres, the reaction of the surface of SiO2 with Ni to give a NiPS-covered SiO2 spheres, and the addition of TiO2 to create the final product. SEM images show the spherical morphology of the mSiO2 and mSiO2@NiPS
  • core and an outer mesoporous shell (Figure 1a and Figure 1d). The inner diameter of the SiO2 spheres was measured to be 415 ± 11 nm with a shell thickness of 80 ± 15 nm. After addition of Ni salt and thermal treatment, the core–shell nanospheres have been maintained but they are now covered with flake
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • specific discharge capacity of the best sample was 27.14 mAh·cm−2 at a stable discharge voltage of 2.75 V. The hybridization between the d-orbital of Ni and s and p-orbitals of carbon in NiCx, formed at 900 °C, enhanced the electrocatalytic performance due to the synergistic effect between these components
  • +/Li. Results and Discussion The overall process of synthesizing NiFe-PBA/PP-T is schematically illustrated in Figure 1. Initially, the freshly cut pomelo peel was mixed with Na3C6H5O7, Ni(NO3)2, and K3[Fe(CN)6] to form bimetallic Prussian blue analogues with a MOF structure at room temperature. Ni3[Fe
  • (CN)6]2 precipitate was formed when Ni(NO3)2 and K3[Fe(CN)6] were mixed. During the formation of Ni3[Fe(CN)6]2, Ni ions and N atoms from the hexacyanoferrate [Fe(CN)6]3− cross-link, which results in the formation of a three-dimensional and cubic framework with abundant Ni, Fe, N, and C within the
PDF
Album
Full Research Paper
Published 02 Dec 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • investigated by transmission electron microscopy (TEM; JEOL JEM 200 CX). The number-average diameter (Dn) was calculated by the measurement of at least 800 particles from different microphotographs of the same sample using the IMAGEJ program. Dn = ΣNiDi/ΣNi, where Ni is the number of particles with the
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020
Other Beilstein-Institut Open Science Activities