Search results

Search for "SQUID" in Full Text gives 79 result(s) in Beilstein Journal of Nanotechnology.

Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

  • Daniel Lenk,
  • Vladimir I. Zdravkov,
  • Jan-Michael Kehrle,
  • Günter Obermeier,
  • Aladin Ullrich,
  • Roman Morari,
  • Hans-Albrecht Krug von Nidda,
  • Claus Müller,
  • Mikhail Yu. Kupriyanov,
  • Anatolie S. Sidorenko,
  • Siegfried Horn,
  • Rafael G. Deminov,
  • Lenar R. Tagirov and
  • Reinhard Tidecks

Beilstein J. Nanotechnol. 2016, 7, 957–969, doi:10.3762/bjnano.7.88

Graphical Abstract
  • quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic
  • values for the splitting of the metallic and oxide cobalt signals, cross-checked with the RBS spectra for plausibility and slightly adapted to yield the best fit to the RBS spectra. Furthermore, we conducted superconducting quantum interference device (SQUID) magnetometry investigations on several SF1NF2
  • curves measured by SQUID magnetometry at T = 10 K, where the sample is normal conducting, yield ms values resulting in mat = 0.074μB, 0.080μB, and 0.127μB. Investigations of the magnetic properties of thin films of Co (deposited on W) [68] and Cu40Ni60 (deposited as Cu40Ni60/Cu multilayers) [53], show
PDF
Album
Full Research Paper
Published 04 Jul 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • deposited films is limited to roughly half the antidot diameter, since the acetone-based chemo-mechanical polishing needs a sidewise access to the spheres allowing PS dissolution. Under best conditions, we achieve defect-free antidot lattices of 25 × 25 µm2. Thus, integral measurements like SQUID
  • field. Unfortunately, FORC requires a multitude of conventional magnetometry measurements usually performed in sensitive vibrating sample magnetometers (VSM) and superconducting quantum interference devices (SQUID) by long-lasting protocols. Moreover, such setups do not provide spatial resolution, which
  • switching of in-plane magnetized antidot films Integral magnetic properties In this section, we present the magnetic hysteresis loops of Fe, Co, and Py antidot films of varying antidot diameter d as determined by SQUID magnetometry. These integral results – averaged over the thousands of structural domains
PDF
Album
Full Research Paper
Published 24 May 2016

Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

  • Tuan Anh Pham,
  • Andreas Schreiber,
  • Elena V. Sturm (née Rosseeva),
  • Stefan Schiller and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2016, 7, 351–363, doi:10.3762/bjnano.7.32

Graphical Abstract
  • orientation perpendicular to the fiber elongation. Finally, magnetic measurements of the hybrid material were conducted. In Figure 10A, results of a superconducting quantum interference device (SQUID) measurement show that the hybrid material is superparamagnetic at room temperature with saturation
  • analysis of the HRTEM images were realized by means of the Digital Micrograph (Gatan, USA) and JEMS (version: 3.5930U2010) software. Visualization of the magnetite crystal models was performed with the VESTA 3 software. The magnetic measurement was accomplished with a SQUID magnetometer, type MPMS XL5 from
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2016

Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

  • Wen Yu,
  • Frank Schramm,
  • Eufemio Moreno Pineda,
  • Yanhua Lan,
  • Olaf Fuhr,
  • Jinjie Chen,
  • Hironari Isshiki,
  • Wolfgang Wernsdorfer,
  • Wulf Wulfhekel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 126–137, doi:10.3762/bjnano.7.15

Graphical Abstract
  • complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior
  • was measured using AC, DC and micro-SQUID magnetometry techniques. The homo-dinuclear complexes of Dy(III) and Er(III) show single-molecule magnet behavior featuring hysteresis loops. The [Tb(tmhd)3]2bpm was sublimated on Au(111) surfaces and scanning tunneling microscopy results are presented in this
  • . Magnetic measurements. Magnetic susceptibility measurements were collected using a Quantum Design MPMS®3 and MPMS-XL SQUID magnetometer. DC susceptibility measurements for all compounds were performed at temperatures ranging from 2 to 300 K, using an applied field of 1 kOe. The AC data were collected using
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2016

Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

  • Jacek Wojnarowicz,
  • Sylwia Kusnieruk,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka,
  • Witold Lojkowski,
  • Wojciech Knoff,
  • Malgorzata I. Lukasiewicz,
  • Bartlomiej S. Witkowski,
  • Anna Wolska,
  • Marcin T. Klepka,
  • Tomasz Story and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2015, 6, 1957–1969, doi:10.3762/bjnano.6.200

Graphical Abstract
  • -ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar
  • compared with two types of reference samples: ZnO NPs and Zn1−xCoxO layers grown by ALD, studied separately [84]. Magnetic investigations The measurement of the magnetic properties of both as-grown and annealed Zn1−xCoxO NPs were performed by a custom-built SQUID magnetometry experiment for the temperature
PDF
Album
Full Research Paper
Published 30 Sep 2015

Thermal treatment of magnetite nanoparticles

  • Beata Kalska-Szostko,
  • Urszula Wykowska,
  • Dariusz Satula and
  • Per Nordblad

Beilstein J. Nanotechnol. 2015, 6, 1385–1396, doi:10.3762/bjnano.6.143

Graphical Abstract
  • analysis of the magnetite and core–shell nanoparticles was performed on a Mettler Toledo differential scanning calorimeter (DSC). A Quantum Design MPMS SQUID magnetometer was used for the magnetization measurements. Mössbauer spectra (MS) were obtained using a conventional spectrometer working in constant
  • expectations and hematite formation [36]. SQUID magnetometry The superconducting quantum interference device (SQUID) experiments were performed in a magnetic field of 50 Oe in the temperature range 10–300 K using zero-field cooled (ZFC) and field cooled (FC) measurement protocols. In the ZFC protocol, the
  • nanoparticles after the heating process. X-ray pattern of MNP-3 nanoparticles after the heating process. DSC curves of reference nanoparticles before heating (A) and after heating at 500 °C (B). IR spectra of magnetite nanoparticles (A) MNP-1, (B) MNP-2, (C) MNP-3 before and during the heating process. SQUID
PDF
Album
Full Research Paper
Published 23 Jun 2015

The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

  • Olga A. Guselnikova,
  • Andrey I. Galanov,
  • Anton K. Gutakovskii and
  • Pavel S. Postnikov

Beilstein J. Nanotechnol. 2015, 6, 1192–1198, doi:10.3762/bjnano.6.121

Graphical Abstract
  • magnetic fields up to 35 T at a temperature of 77 K with a SQUID magnetometer in magnetic fields up to 15 kOe at 300 and 2 K. Synthesis of 4-nitrobenzenediazonium tosylate To a solution of p-TsOH (1.425 g, 7.5 mmol) in acetic acid (12 mL), tert-butyl nitrite was slowly added (0.9 mL, 7.5 mmol). Next, 4
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Magnetic properties of iron cluster/chromium matrix nanocomposites

  • Arne Fischer,
  • Robert Kruk,
  • Di Wang and
  • Horst Hahn

Beilstein J. Nanotechnol. 2015, 6, 1158–1163, doi:10.3762/bjnano.6.117

Graphical Abstract
  • -field cooled/field cooled (ZFC/FC) magnetization measurements and magnetic hysteresis loops recorded in a commercial superconducting quantum interference device (SQUID, Quantum Design) magnetometer. The ZFC/FC curves were collected with an applied external magnetic field of μ0H = 20 mT in a temperature
PDF
Album
Letter
Published 13 May 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • measured by using a super conducting quantum interface device (SQUID) magnetometer. The photoluminescence spectra of silica coated Gd2(CO3)3:Tb NPs showed a characteristic charge-transfer band at 225 nm and a narrow peak at 274 nm. The T1-weighted MR images were obtained by using a 0.5 T magnet. The
  • fluorescence spectroscopy, XRD, FTIR and SQUID magnetometry. The in vitro studies on bone-marrow-derived polymorphonuclear neutrophils (BM-PMNs) suggested that these nanoparticles exert toxic effects only at high concentrations. In a similar way, Chen et al. [25] synthesized FITC-conjugated mesoporous
  • group in BDA after silica binding. When the PL spectra of SiO2/Fe3O4/BDA/Ln3+ and free Ln3+ ions were compared, the former showed higher luminescent intensity than the latter. Further, the magnetization of NPs was measured by SQUID studies and confirmed the superparamagnetic behavior of these hybrid NPs
PDF
Album
Review
Published 24 Feb 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • -necklace-like, power law of Q−1), while in the gelatin gel matrix without chitin, the nanoparticles exhibit a branch-like arrangement (power law of Q−2). Magnetization measurements Magnetic properties of the nanocomposite were measured by using a superconducting quantum interference device (SQUID
  • template. We can control the mineral content of our hybrid material by repetition of reaction cycles, the mineral content varies form 15 wt % (one reaction cycle) to 65 wt % (eight reaction cycles). SQUID measurements showed that our composite material shows superparamagnetic behavior, which is typical for
  • , Germany). Measurements were carried out at a heating rate of 5 K/min under a constant oxygen flow. Samples were scanned from 293 K to 1273 K. Magnetization measurements were carried out by using a quantum design superconducting quantum interference device (SQUID) 5 T magnetic properties measurement system
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • the external magnetic field. A superconducting quantum interference device (SQUID) magnetometer analysis was carried out and revealed that the magnetic properties of the BNNTs were related to the Fe catalysts. Considering the magnetic properties and the ability to bind molecules on a large surface
PDF
Album
Review
Published 08 Jan 2015

Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation

  • Julie Jung,
  • Olivier Cador,
  • Kevin Bernot,
  • Fabrice Pointillart,
  • Javier Luzon and
  • Boris Le Guennic

Beilstein J. Nanotechnol. 2014, 5, 2267–2274, doi:10.3762/bjnano.5.236

Graphical Abstract
  • charges were computed by using the LoProp approach [57]. Magnetic measurements. Angular-resolved magnetometry was performed on a single-crystal of Dy1 with a Quantum Design MPMS-XL SQUID magnetometer by using the horizontal-rotator option. The background of the sample holder was subtracted. Molecular
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014

Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

  • Matthias G. Wacker,
  • Mahmut Altinok,
  • Stephan Urfels and
  • Johann Bauer

Beilstein J. Nanotechnol. 2014, 5, 2259–2266, doi:10.3762/bjnano.5.235

Graphical Abstract
  • nanoparticles The specific (mass depended) magnetization of the dried magnetite nanoparticles was determined by using a Quantum Design SQUID magnetometer (Quantum Design Inc., San Diego, USA). The sample was fixed in a gelatine capsule and moved through the induction coils (vibrating sample mode) of the
PDF
Album
Full Research Paper
Published 27 Nov 2014

Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

  • Ahmed Salama,
  • Mike Neumann,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2014, 5, 1553–1568, doi:10.3762/bjnano.5.167

Graphical Abstract
  • mineralization of carbohydrates with various calcium phosphates. Falini and coworkers used β-chitin from a squid pen for mineralization of octacalcium phosphate (OCP) and hydroxyapatite (HAP) [14][15]. They found a distinct change of the chitin fiber organization on OCP mineralization. Moreover, the OCP–HAP
PDF
Album
Full Research Paper
Published 16 Sep 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • particular, the average size determined by line profile analysis is 11.0 ± 1.0 nm, in good agreement with the TEM data. The USM sample readily responds to an external magnet and the main magnetic parameters, as derived by SQUID magnetometry characterisation, are summarised in Table 1. ZFC-FC magnetisation
  • incubated at 37 °C for 48 h. More than 100 cells were examined for each experimental condition. P < 0.05 significant differences with respect to control cells. Carbodiimide-mediated covalent attachment of PEG to USM-Suc. Main magnetic parameters as derived for the USM sample by SQUID magnetometry: Maximum
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • ][8][9]. For insect cuticles, the quinone tanning (i.e., sclerotization) occurs via crosslinking of cuticular proteins in which primary amines, secondary amines, and phenols from the proteins react with N-acetylcatecholamines [9][10][11]. For squid beaks, the reaction between the imidazole of
  • . Biomaterials formed by quinone tanning processes found in (a) squid beaks, (b) insect cuticles, and (c) mussel adhesives. Representative chemical reactions were shown for each biomaterials (a,b,c top). Synthetic PEG derivatives that can mimic the natural catecholamine-involved quinone tanning due to the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

  • Valeriu Mereacre,
  • Frederik Klöwer,
  • Yanhua Lan,
  • Rodolphe Clérac,
  • Juliusz A. Wolny,
  • Volker Schünemann,
  • Christopher E. Anson and
  • Annie K. Powell

Beilstein J. Nanotechnol. 2013, 4, 807–814, doi:10.3762/bjnano.4.92

Graphical Abstract
  • SQUID magnetometer MPMS-XL. This magnetometer works between 1.8 and 400 K for dc applied fields ranging from −7 to 7 T. Measurements were performed on polycrystalline samples. Alternating current susceptibility measurements have been measured with an oscillating ac field of 3 Oe and ac frequencies
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2013

In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation

  • Eva-Maria Steyskal,
  • Stefan Topolovec,
  • Stephan Landgraf,
  • Heinz Krenn and
  • Roland Würschum

Beilstein J. Nanotechnol. 2013, 4, 394–399, doi:10.3762/bjnano.4.46

Graphical Abstract
  • gained by means of a direct comparison of the charge-induced response of two different properties, namely electrical resistance and magnetic moment. For this purpose, four-point resistance measurements and SQUID magnetometry were performed under identical in situ electrochemical control focussing on the
  • combination to provide a deeper understanding of the underlying charge-related processes since both properties are expected to respond differently on charging and chemical modification. The studies make use of a specifically designed electrochemical cell that allows in situ magnetic studies in a SQUID
  • four-point geometry with a Keithley 2400 multimeter using the outer contact pair for current supply and the inner contact pair for voltage measurement. SQUID magnetometry was performed in a MPMS-XL-7 device (Quantum Design) at a constant magnetic field of 5 kOe upon in situ electrochemical charging
PDF
Album
Letter
Published 24 Jun 2013

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier and
  • Pierre-Yves Tessier

Beilstein J. Nanotechnol. 2012, 3, 846–851, doi:10.3762/bjnano.3.95

Graphical Abstract
  • investigated at 300 K by using a Quantum Design SQUID magnetometer. The in-plane magnetization hysteresis loops were measured for an applied field parallel (black curve) and perpendicular (red curve) to the wire axis (Figure 4). The saturation fields, measured in both configurations, were found to be almost
  • SQUID magnetometer.
PDF
Album
Supp Info
Letter
Published 11 Dec 2012

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • switching in percolated Fe films The impact of such percolated structures as a function of thickness t, the remaining diameter of particles d and the average center-to-center distance a on the magnetic reversal was investigated by integral superconducting quantum interference device (SQUID) magnetometry
  • characterization techniques, such as SQUID magnetometry, it is convenient to determine the coercive field HC as a function of the geometric parameters t, d, and a of the samples, as shown in Figure 5b–d, respectively. In panel (b) HC is displayed as a function of the film thickness t for different remaining
PDF
Album
Full Research Paper
Published 07 Dec 2012

Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

  • Andrei E. Surdu,
  • Hussein H. Hamdeh,
  • Imad A. Al-Omari,
  • David J. Sellmyer,
  • Alexei V. Socrovisciuc,
  • Andrei A. Prepelita,
  • Ezgi T. Koparan,
  • Ekrem Yanmaz,
  • Valery V. Ryazanov,
  • Horst Hahn and
  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2011, 2, 809–813, doi:10.3762/bjnano.2.89

Graphical Abstract
  • the magnetization hysteresis (M–H) curves of the FeO-covered and uncovered MgB2 films at H perpendicular to the sample surface at various temperatures from 4.2 K to 20 K. All the magnetization measurements were performed in a superconducting quantum interference device (SQUID) magnetometer (Quantum
  • Design, Magnetic Property Measurement System, MPMS-XL). The SQUID magnetometer has a sensitivity of l0−8 emu and operates in the temperature range 1.9–400 K, with magnetic fields up to 7 T; it has a high field uniformity of 0.01% over 4 cm. Pd was used as a standard for the SQUID magnetometer. The
PDF
Album
Letter
Published 14 Dec 2011

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • alloy formation by X-ray absorption spectroscopy and SQUID magnetometry. The excellent sensitivity of SQUID magnetometers can be exploited, at suitably selected temperatures, to detect the magnetic response corresponding to the Co particles and nanoscale alloys. X-ray magnetic circular dichroism (XMCD
  • ) derives its sensitivity from being both element specific and surface sensitive. It is therefore ideally suited for the kind of specimens studied here. In addition to the information contained in (both, SQUID and XMCD) hysteresis loops, we obtain spectroscopic signatures of the average magnetocrystalline
  • additionally confirms the lateral spread of Co atoms. Additional in-plane hysteresis loops were measured by SQUID magnetometry for 7 nm Co NPs on Pt(111) films after different annealing steps. Note that each hysteresis loop was measured on a separate sample to exclude any effect of the thin SiO cover layer
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles

  • Srinivasa Saranu,
  • Sören Selve,
  • Ute Kaiser,
  • Luyang Han,
  • Ulf Wiedwald,
  • Paul Ziemann and
  • Ulrich Herr

Beilstein J. Nanotechnol. 2011, 2, 268–275, doi:10.3762/bjnano.2.31

Graphical Abstract
  • first introduce the experimental method for applying stress and provide evidence for the presence of large biaxial stresses. Then we present results from SQUID magnetometry of Fe nanoparticles in the stressed and stress-free state for the same sample over a range of temperatures. Results and Discussion
  • SQUID magnetometer were performed over a range of temperatures. Figure 5 shows the magnetization curves of the 13 nm embedded Fe nanoparticles at a temperature T = 10 K; the magnetic field was applied parallel to the plane of the film (in-plane). The paramagnetic signal of the Ta substrate was fitted
  • be noted that in the as-prepared state the Fe nanoparticles show a superparamagnetic behaviour in our SQUID measurements at 300 K. A direct comparison of the identical sample before and after hydrogen loading showed an almost identical coercivity, but a significant increase of the Mr/Ms ratio (Mr is
PDF
Album
Full Research Paper
Published 01 Jun 2011

Extended X-ray absorption fine structure of bimetallic nanoparticles

  • Carolin Antoniak

Beilstein J. Nanotechnol. 2011, 2, 237–251, doi:10.3762/bjnano.2.28

Graphical Abstract
  • 2.75 μB at x = 68 atom %. However, the total magnetic moment averaged over the different lattice sites increased almost linearly with increasing Fe content as is also known from experimental data using conventional magnetometry such as SQUID or VSM magnetometry [92]. Compared to experimental data on
PDF
Album
Review
Published 11 May 2011

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • technologies have been developed [1]. These include techniques that use magnetometers, such as superconducting quantum interference device (SQUID) [2][3][4], magnetoresistive sensors [5][6][7][8][9][10][11], and Hall sensors [12], which directly measure the magnetic fields from magnetically-labeled biological
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities