Search results

Search for "biomolecules" in Full Text gives 204 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • biosynthesis occurs outside of cells due to the presence of biomolecules [191], which depends on the type of cell culture used. For instance, cell-wall deficient cells are typically more inclined towards intracellular biosynthesis as the cell-wall is known to act as a barrier for the diffusion of metal cations
PDF
Album
Review
Published 25 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • oxidative stress and cause apoptosis. In addition, intracellular redox homeostasis and gene expression can be modulated [26]. Lanthanide ions are usually not reported as highly toxic. However, they can interact with proteins, enzymes, and other biomolecules [27][28] and might also cause oxidative damage or
  • protect UCNPs surfaces from dissolution. In contrast to a more complex polymeric coating, silica surfaces can be easily functionalized with a wide range of coupling agents and biomolecules, and the interior of the silica shell can be modified by integrating dye molecules, for example. However, amorphous
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • /nanopore; nano/microstructures; SERS substrate; Introduction Surface-enhanced Raman spectroscopy (SERS) can be used to detect biomolecules [1][2][3], explosives [4][5][6], and pesticide residues [7][8][9]. Plasmonic metal nanostructures are often used as SERS substrates to increase the molecule-specific
PDF
Album
Full Research Paper
Published 16 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • intracellularly or in the extracellular milieu, where the biomolecules released from the cells are located. As an example of the latter, Pseudomonas strutzeri bacteria can successfully generate Ag NPs extracellularly [84]. Conversely, the bioreduction of iron followed by the precipitation of an oxide, which is
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • platform and can be adapted to detect biomolecules [9]. Silicon nanowires are used as template for cancer sensors. The nanowires are implemented as gate in integrated sensing FETs [10][11]. A wide range of chemical sensors and biosensors benefit from porous silicon structures [12]. All these presented
PDF
Album
Full Research Paper
Published 23 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • grafting of biomolecules via ionic bonding or adsorption and by the covalent conjugation of biomolecules via strong chemical bonding [17][18]. Noncovalent nanoparticle functionalization is relatively easy to undertake. However, the results are difficult to control and to reproduce presumably because of
  • al. studied how biomolecules influenced the stability of gold nanoparticles and showed that serum proteins at high concentrations stabilized the nanoparticles, whereas lower concentrations enhanced nanoparticle aggregation. Also, immunoglobulins and fibrinogen caused a greater extent of particle
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • binding sites are available for cadmium ions on the microcantilever surface. Two microcantilevers exhibit a decrease in resistance because of tensile stress due to a small number of biomolecules (Cd(II)) binding to the surface (Figure 4b,d), while the other three microcantilevers exhibit an increase in
  • the resistance because of compressive surface stress when a large number of biomolecules bind to the microcantilever surface (Figure 4a,c,e) [47]. Figure 5 demonstrates the average change in piezoresistance of a sensor based on Au-Cys-DL-GC-coated cantilevers for different heavy metals (AlCl3, MnCl2
PDF
Album
Full Research Paper
Published 18 Aug 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • have shown that specific NPs have been able to bind to biomolecules from the coagulation system and induce haemorrhage or thrombosis [4]. The depletion of soluble coagulation factors (e.g., fibrinogen, XII factor) may occur following adsorption of the factors at the NP surface. On the other hand, the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • ; biosensing; gold nanoclusters; immunoassay; luminescence; self-assembly; theranostics; Introduction Imaging methods play a central role in understanding the structural and functional biological processes of biomolecules, cells, tissues, organs, and even entire living organisms [1][2]. The importance of
  • biomolecules [7]. Antibodies conjugated to low molecular weight fluorescent dyes have been used for various bioimaging applications [8]. Despite their cost-effectiveness, and water solubility, organic dyes display a small Stokes shift, low photochemical stability and they undergo photobleaching [9][10
  • rapid detection and the development of new immunoassays. Imaging and labeling mammalian cell lines Beyond their antibacterial effect and pathogen sensing, the surface functionalities of NCs allow for selective labeling for the detection of biomolecules, intracellular metal ion sensing, live-cell imaging
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • multilayer capsules as drug delivery vehicles [17]. They are capable of encapsulating all kinds of substances and/or molecules ranging from enzymes, nucleic acid, peptides, proteins, therapeutic drugs, biomolecules, fluorescent molecules and nanoparticles (NPs) in their hollow cavity [18]. This can be
  • in the shell are also used to carry out the release of the encapsulated payload in a controlled manner. The incorporation of functionalities such as organic molecules, NPs, fluorescent dyes, polymers, nanotubes and other biomolecules into the PE multilayers during the fabrication makes it easy to
  • calixarene units covalently bound in various ways. Although there are many reports on calixerene [59], cyclodextrins offer a wide scope for such interactions in biological applications. They could act as a host for many biomolecules or drugs via hydrogen bonding, hydrophobic interaction or van der Waals
PDF
Album
Review
Published 27 Mar 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • success [13][14], and so far only few targeted nanomedicines are currently present in the market, even if several are in clinical trials [6]. Recent advances in the field have shown the complexity of achieving targeted uptake by specific cells. For example, it has been shown that the biomolecules
  • biomolecules leading to the formation of a corona [36][37][38][39]. It has been shown that, in some cases, the presence of the corona can mask the targeting moieties grafted on the nanoparticle surface, preventing recognition by cell receptors [15][16][40]. Corona formation can affect not only the targeting
  • modifications reduce the amount of biomolecules bound on the surface of nanomedicines after administration (though it has been shown that PEGylated surfaces can still adsorb proteins [46][47]) and usually also lead to decreased uptake by cells. At the same time, the corona confers a new biological identity to
PDF
Album
Review
Published 14 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • nanorods into the bacterial cell wall to interact with the cellular biomolecules that increases the osmotic potential and its associated irreversible damage and (ii) the generation of free reactive oxygen species (ROS) radicals that are induced by nanorods that interact with the bacterial membrane and
PDF
Album
Full Research Paper
Published 04 Feb 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • simple blood test, setting thus a milestone of “liquid biopsy”. Liquid biopsy has the potential to accelerate the early cancer diagnosis by the detection of biomolecules such as cell-fee DNA directly in blood samples. Currently, the development of liquid biopsies is directly linked to the state-of-the
  • nanoparticles (metallic gold) are widely applied in the development of biological sensing devices. Gold is an inert metal that exhibits exceptional chemical stability in physiological media and the readiness for surface functionalization with desired biomolecules through stable Au–S bonds. The key properties of
PDF
Album
Review
Published 31 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • attractive concept in materials science [1][2]. Exploitation of biomolecules and their in-built information for molecular recognition to engineer ordered assemblies and coassemblies of SFMs is termed as molecular architectonics [3][4]. The construction of molecular architectures through the controlled
  • assembly of designed molecular units with fascinating properties and functions is central to all materials and bioengineering processes [1][2][3][4]. The use of biomolecules or synthetic systems with biomolecular components is capable of aiding the judicious regulation of molecular assembly parameters and
  • properties to construct novel functional architectures in the scheme of molecular architectonics [1][2]. Among all biomolecules, DNA, with a well-defined structure, is the epitome of molecular recognition and a robust system for molecular and materials engineering. The molecular stability, predictable
PDF
Album
Review
Published 09 Jan 2020

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • nanostructures made of more than one component nanomaterial, combined with biomolecules is a highly sought goal in biomedical science, and can find applications in multimodal imaging and therapeutics [1][2]. Although interest in developing such hybrid nanostructures by, for example, combining plasmonic and
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • be similarly necessary for applications in plasmonics or chemical sensing [20][21]. One of the most versatile ways to protect the surface of NP, making hydrophobic particle surfaces hydrophilic and simultaneously providing functional groups for subsequent covalent attachment of, e.g., biomolecules
  • the UCL emission spectra. This stepwise shell growth can most likely be also utilized for the coating of other NPs with similar hydrophobic surface chemistries of the initial particles such as iron oxide NPs or semiconductor NPs. Further applications can include the covalent attachment of biomolecules
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • magnetism than other iron oxide nanoparticles [17]. These MNPs can be synthesized through various techniques, such as ultrasound irradiation, sol–gel methods, thermal decomposition, and co-precipitation [18][19][20][21]. In addition, they can be modified with biomolecules and other compounds to improve the
  • polymer-based immunosensor [34][55]. This rather low value is expected for biosensors where the index n is characteristic of heterogeneous adsorption with polyclonal biomolecules that have many active sites with different degrees of affinity and selectivity. Application of the immunosensor in real samples
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • ultrashort 10 ms acquisition times in sub-nanomolar amounts of Gd spins. The photobleaching and blinking issues of NV are addressed in [27] by use of fluorescent ND (FND), which has an extremely high NV center concentration. Their lifetimes are longer than fluorescent biomolecules, and the emission can be
PDF
Album
Review
Published 04 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • . Placing such water-insoluble receptor molecules at a water-contacting interface is crucial to sense water-soluble substances such as important biomolecules. Not limited to this technical requirement, interfacial media have the benefit to greatly enhance molecular recognition capability [146][147
  • biomolecules including amino acids [156], peptides [157][158][159], sugars [160][161], nucleic acid bases [162][163], and nucleotides [164][165][166] at well-designed interfacial environments. In order to design and fabricate sensors with better performance, interfacial nanoarchitectonics should be crucial
PDF
Album
Review
Published 16 Oct 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • circulation via different routes [40][41][42][43]. Absorbed or intravenously applied NPs will accumulate in different body compartments [44][45][46]. AgNPs are prone to oxidative dissolution in biological media and the released Ag+ reacts with thiolate groups of sulfur-containing biomolecules [47], which may
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • harmonization of mutual interactions [1][2][3][4][5][6][7][8][9][10][11]. Such harmonized mechanisms are found ubiquitously in biological systems consisting of a huge number of components; biomolecules, such as DNAs and peptides, and even living cells have therefore attracted considerable attention in
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • bottom-up approaches are self-assembly and self-organization based on supramolecular chemistry [69]. These supramolecular mechanisms can be widely observed in various species including small molecules, nanomaterials, and biomolecules [70][71][72][73][74][75]. Despite this generality, there are still many
PDF
Album
Review
Published 30 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • ][58][59]. The SERS substrate was also applied to monitor the molecular recognition through multiple hydrogen bonds between adenosine and thymidine. This paper-based SERS substrate could hold potential in the detection of trace amounts of analytes and for the spectroscopic study of biomolecules
  • hydrogen bonds between nucleosides to test its potential in monitoring biomolecules. Figure 6 shows the Raman spectra obtained from adenosine and thymidine, measured before and after the molecular recognition between the two nucleosides on the substrate. Compared to the Raman spectra of the powder samples
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019
Other Beilstein-Institut Open Science Activities