Search results

Search for "electrochemical" in Full Text gives 491 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • improve electrical conductivity and electrochemical performance [5][6][7][9][13][14][15][16][23][24][25][26][27][28][29][30][31][32]. Nanostructured materials can reduce the specific surface current rate as well as improve stability and specific capacity [23][24][25][26][27][28][29]. LiCoO2 has been
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • Southeast Asian box turtle, Cuora amboinensis, is an ecologically important endangered species which needs an onsite monitoring device to protect it from extinction. An electrochemical DNA biosensor was developed to detect the C. amboinensis mitochondrial cytochrome b gene based on an in silico designed
  • scanning electron microscopy and structural characteristics were analysed by using energy-dispersive X-ray, UV–vis, and Fourier-transform infrared spectroscopy. The electrochemical characteristics of the modified electrodes were studied by cyclic voltammetry, differential pulse voltammetry (DPV), and
  • electrochemical impedance spectroscopy. The thiol-modified synthetic DNA probe was immobilised on modified SPCEs to facilitate hybridisation with the reverse complementary DNA. The turtle DNA was distinguished based on hybridisation-induced electrochemical change in the presence of methylene blue compared to
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • utilizing an EMX micro A200-9.5/12/S/W, Bruker Biospin, Germany. Photoelectrochemical study The photoelectrochemical properties of the studied materials were evaluated through a CHI 650 electrochemical workstation comprising a three-electrode system with Pt and Ag/AgCl as counter and reference electrodes
  • . The Mott–Schottky (MS) analysis was performed at a frequency of 1 kHz while the electrochemical impedance spectroscopy (EIS) studies were conducted at 0 V DC under a frequency range of 105 to 100 Hz. The open circuit potential as a function of time (OCPT) was performed under alternating light and dark
  • reflectance for the specified materials, respectively. It was observed that the MBN had an enhanced LHE (90%) in comparison to that of HBN with zero activity in the visible range, 85% (MBN-50), and 70% (MBN-25). Electrochemical analysis The EIS analysis provides further evidence on the enhanced performance of
PDF
Album
Full Research Paper
Published 22 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • nanocrystals. The X-ray diffraction pattern confirms the hexagonal structure. Due to the near-infrared light absorption capability, the synthesized QDs were used as the sensitizer to fabricate QDSCs. The fabricated QDSCs were characterized by using electrochemical impedance spectroscopy and photovoltaic
  • performance studies. The fabricated QDSC have superior electrochemical activity with a photoconversion efficiency of 4.91%. Keywords: alloyed QDs; photoconversion efficiency; photovoltaic performance; quantum dots; Introduction Human life depends on various forms of energy. Approximately 13 terawatts of
  • ) and a photoluminescence spectrofluorometer (Jobin Yvon Horiba Nanolog). Impedance analysis of the fabricated QDSCs was conducted by using a CH instruments 760 A electrochemical workstation at applied frequencies of 100 kHz to 1 MHz with 10 mV AC voltage recording the Nyquist plots. The J–V curves were
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , is more sensitive to photocurrent, and has a lower electrochemical impedance rate. This is because of surface plasmon resonances (SPRs) and the electron transport capabilities of Bi. The photocatalytic activity for the breakdown of phenol was significantly improved, compared to pristine Bi2WO6 under
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • interaction force between the particle and the surface. A new colloidal AFM probe was proposed by Daboss et al. [14]. These conductive spherical boron-doped diamond (BDD)-AFM probes allow electrochemical force spectroscopy. The physical robustness of these bifunctional probes and the excellent electrochemical
  • . Karg et al. [50] proposed a method that could develop the colloidal probe technique in the direction of electrochemistry. This preparation method allows the selection of many colloidal particles containing electrochemical activity as probes. The colloidal gold particles in the experiments based on this
  • , such as copper, silver, platinum, etc. Thus, it is also possible to prepare electrochemical colloidal probes (eCPs) with other metals. eCPs under electrochemical control of colloidal probes have potential in various research areas such as adhesion science, tribology or long-range interactions. eCPs
PDF
Album
Review
Published 03 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • catalytic and photocatalytic properties [46] porous TiO2 frameworks formed by the annealing of titanicone films may serve as catalytic supports [47]. Titanicone films can also be pyrolyzed under Ar to yield conducting TiO2/carbon composite films with important electrochemical applications as electrodes for
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • using various dry/wet etching techniques including electrochemical HF etching, stain etching, metal-assisted etching, and reactive ion etching [9][11]. So-called “nanograss” or “black silicon” is a surface modification of silicon where the surface is covered with millions of tiny needle-like structures
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • resonance [10], Fourier transform infrared spectrometry (FTIR) [11], UV–vis absorption spectrometry [12], mass spectrometry (MS) [13], titration microcalorimetry [14], high-performance liquid chromatography (HPLC) [15], gas chromatography (GC), capillary electrophoresis (CE) [16], and electrochemical chiral
  • ± 0.15, 1.81 ± 0.08, 1.37 ± 0.03, and 2.89 ± 0.09, respectively. Through further electrochemical tests, HPLC analysis, and theoretical calculations it was revealed that ʟ- and ᴅ-forms of SA-Cd exhibited mirror behaviors towards guest enantiomers, and HCP construction may enhance enantioselectivity. The
  • chiral molecules may allow for the separation of enantiomers such as oligopeptides. Y. Lu et al. investigated the enantiospecific interaction between a magnetized surface and a chiral amino acid by using electrochemical quartz crystal microbalance (EQCM) and Cys as a chiral model [146]. The
PDF
Album
Review
Published 27 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • synthetic pathways for the formation of CDs, that is, “top-down” and “bottom-up” methods. In the top-down method, large carbon structures (such as carbon nanotubes or graphite) are decomposed into CDs. The top-down methods include arc discharge, laser abrasion [24], chemical and electrochemical oxidation
  • techniques for improving synthesis, characterization, yield, and applications of CDs There are several outstanding review articles on different applications, such as photochemical and electrochemical applications [32], photocatalysis [33], optoelectronics [34], wastewater treatment [35], food safety
  • electrochemical properties. Lily bulbs as a green source to synthesize N,P-CDs via a facile, fast, and eco-friendly one-pot microwave-assisted method was reported by Gu et al. Lily bulbs rich in carbohydrates, proteins, lipids, and amino acids, can be easily used to prepare such CDs [108]. The microalgae
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • delivery system in synthetic bone implants can stimulate bone regeneration while preventing bacterial infection. Furthermore, coating materials containing TiO2 can help drug stabilisation producing a long-term drug release profile [119]. The electrochemical anodization process was used by Lai et al. (2018
PDF
Review
Published 29 Sep 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • ) with BaSO4 as a reference. The photoluminescence spectrum (PL) was obtained from a luminescence spectrometer at an excitation wavelength of 446 nm (RF-530IPC, Shimadzu, Japan). The photocurrent response and electrochemical impedance spectra (EIS) were measured by an electrochemical workstation
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • 0.94 V vs RHE, 0.78 V, and 3.6 mA·cm−2, respectively, with an electrochemical active surface area of 66.92 m2·g−1 and a mass activity of 40.55 mA·mg−1. The optimum electrocatalyst shows considerable electrochemical stability over 10,000 cycles in 0.1 M KOH solution. Keywords: copper cobalt oxide NPs
  • electrochemical active surface area (ECSA) of 66.92 m2·g−1 and a mass activity of 40.55 mA·mg−1. We investigated bonding nature, composition, and morphology of the ACC-2 sample using XPS and TEM. The material is electrochemically stable up to 10,000 potential cycles, highlighting the durability of the
  • selection of Cu and Co is their similar crystal structure to that of silver, besides their catalytic oxidizing ability. Moreover, to date, there are no reports on the evaluation of the electrochemical ORR activity in alkaline media employing AgCuCo oxides supported on rGO. To identify the phase formation
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • that are most suitable for operation in liquid environments where bias application can lead to unwanted electrochemical reactions. We conclude that open-loop multifrequency KPFM modes operated with the first harmonic of the electrostatic response on the first eigenmode offer the best performance in
  • currents and unwanted electrochemical reactions) [9][33][34][35]. OL techniques avoid the limitations and artefacts that can arise when using a feedback loop, for example, bandwidth limitations due to the time constant of the feedback loop [29], increased noise [36][37], and electrical crosstalk [38][39
  • KPFM operation in liquid please see Collins et al. [9]. Our goal in this paper is to identify the OL techniques that provide the greatest performance with the smallest required VAC for operation in liquid environments, where bias application could lead to stray currents and unwanted electrochemical
PDF
Full Research Paper
Published 12 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • methods to treat wastewater to purify water quality, such as electrochemical oxidation [12], Fenton method [13], ozonation [14], and photocatalysis [15]. They can achieve a fast reaction rate and extremely high organic removal ratio under average temperature and pressure to remove or decompose organic
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • core crystal [129]. After growing thicker, the interfacial stress forced the core crystal to yield to the shell crystal, making the whole composite present a single phase as the shell crystal [129]. The grown monocrystalline coordination polymer layer dominated the electrochemical behavior of the whole
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • , respectively. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) Nyquist plots (frequency: 0.01 Hz−100 kHz, alternate current: 5 mV) of a given sample were obtained on a CHI 760D (Shanghai, China) electrochemical workstation using a three-electrode system. The Pt plate (1.0
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected
  • stability (≈180 days), good reproducibility, and repeatability for interference-free detection of PT residues in actual samples. This electrochemical nanosensor is suitable for point-of-care detection of PT in a wide dynamic range of 3 × 10−11–11 × 10−6 M with a lower detection limit of 10.9 pM. The
  • performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples. Keywords: electrochemical nanosensor
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • metallic catalysts can also be obtained by adjusting metal ions for outstanding electrochemical reactions. In this study, various bimetallic zeolitic imidazolate framework (ZIF)-derived carbons were designed by varying the ratio of Zn to Co ions. Moreover, carbon nanotubes (CNTs) are added to improve the
  • electrical conductivity further, ultimately leading to better electrochemical stability in the cathode. As a result, the optimized bimetallic ZIF–carbon/CNT composite exhibits a high discharge capacity of 16,000 mAh·g−1, with a stable cycling performance of up to 137 cycles. This feature is also beneficial
  • containing a Li+-conductive aprotic electrolyte. In principle, electrochemical reactions between Li+ and O2 take place in the cathode to store and convert energy. During the discharge, the oxygen reduction reaction (ORR) occurs at the surface of the cathode, where O2 is spontaneously reduced by Li+ coming
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • Physics, University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Belgrade, Serbia 10.3762/bjnano.13.58 Abstract Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is
  • electrochemical exfoliation, whereby graphene is exfoliated in an electrolyte from an electrode made of graphite [19]. In electrochemical exfoliation, ions from the electrolyte flow towards the graphite electrode and intercalate between the graphene layers. The electrochemical reaction provides a driving force to
  • break van der Waals forces, leading to exfoliation [20]. Electrochemical exfoliation offers an alternative to LPE that is both scalable and widely available. It has been used to make graphene for various applications, including energy storage [21][22]. Both ultrasound-assisted LPE and electrochemical
PDF
Album
Full Research Paper
Published 18 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • dichalcogenide. Keywords: copper phthalocyanine; local structure; molybdenum diselenide; optical spectroscopy; surface-enhanced Raman spectroscopy; Introduction Two-dimensional (2D) materials have garnered interest for the next generation of optoelectronic and electrochemical devices, mainly owing to their
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • solution containing (NH4)6Mo7O24·4H2O and Na2S by cyclic voltammetry (CV). Morphology and thickness of the MoS2 thin films were controlled by adjusting the concentration of the precursor solution. The electrochemical catalytic activity of the MoS2 thin films was investigated regarding the I3–/I–redox
  • . This suggested that the MoS2-1.25/FTO CE has reversible redox activity and electrochemical stability. The electrochemical stability of the MoS2/FTO CE should provide long-term stability for solar cell devices. However, more work needs to be done to improve the efficiency of this DSSC device [36][37][38
  • performed on a LabRAM HR 800 Raman Spectrometer (HORIBA Jobin Yvon) with an excitation laser source at 532 nm. The morphology of MoS2 thin films was analyzed by an ultrahigh-resolution field-emission scanning electron microscope (FE-SEM, Hitachi SU-8010, Japan). The electrochemical catalytic activity of the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • V and +0.4 to +1.2 V. A z-resolution higher than 0.01 nm could be achieved. The STM tips were prepared from 0.375 mm polycrystalline tungsten wire (Alfa Aesar) by electrochemical etching in a 3 M NaOH solution. The instrument was calibrated by imaging HOPG with atomic resolution. The data was post
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • spectroscopy and X-ray diffractometry. The resulting nanostructured samples were used for electrochemical determination of the H2O2 content in a 0.1 M NaOH buffer solution using cyclic voltammetry, differential pulse voltammetry, and i–t measurements. A good linear relationship between the peak current and the
  • interfering substances, that is, ascorbic acid, uric acid, dopamine, NaCl, glucose, and acetaminophen, do not affect the electrochemical response. The real milk sample test showed a high recovery rate (more than 95%). According to the obtained results, this sensor is suitable for practical use for the
  • qualitative detection of H2O2 in real samples, as well as for the quantitative determination of its concentration. Keywords: copper oxide; electrochemical sensor; hydrogen peroxide; nanostructures; Introduction Hydrogen peroxide, a strong oxidant and an essential intermediate product in many biomedical
PDF
Album
Full Research Paper
Published 03 May 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • was measured using an oscilloscope DS1102E (produced by Rigol). The short-circuit current was tested using an electrochemical workstation (CH, model CHI660E). The crystal structure of the samples was analyzed using a Bruker D8 Advance X-ray diffractometer. A scanning electron microscope (Coxem, model
PDF
Album
Full Research Paper
Published 15 Mar 2022
Other Beilstein-Institut Open Science Activities