Search results

Search for "flow cytometry" in Full Text gives 62 result(s) in Beilstein Journal of Nanotechnology.

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • form of calcitriol. This was the cell line where the encapsulation of calcitriol in NPs proved to be more advantageous. Cell cycle arrest by calcitriol-loaded PLGA NPs To assess whether the cytotoxic effects of calcitriol are due to cell cycle inhibition, cell cycle analysis by flow cytometry was
  • the increased inhibition of cell growth in the 72 h assay, as compared with the 48 h assay. We conclude that a longstanding treatment presents more pronounced, deleterious effects since these NPs are able to maintain drug concentrations. Furthermore, flow cytometry analysis demonstrated that
  • cycle analysis was conducted by flow cytometry (FCM). The cells were seeded in T75 flasks at a density of 1 × 105 cells/mL for 24 h prior to the experiment. The cells were then treated with 1.2 µM of free calcitriol and entrapped in PLGA NPs for 72 h. Due to the short half-life of calcitriol in cell
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • the synthesized nanocomposites exhibited a signal enhancement in the T1-weighted MRI images with increasing Mn concentration. The in vitro studies performed on HeLa cells suggested cell viability of more than 80% even at a Mn concentration of 50 mg·mL−1. The combination of results obtained from flow
  • cytometry, confocal microscopy and MRI studies suggested that the prepared nanocomposites can be used for targeting cancer cells that overexpress folic acid. Similar strategies were also used by Peng et al. [22] by using an iridium(III) complex as fluorescent agent. Hu et al. [23] reported the synthesis of
PDF
Album
Review
Published 24 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • differentiation studies, cellular uptake and cytotoxicity of the particles were quantitatively determined by flow cytometry. After incubation with 300 µg/mL nanoparticles for 24 h, hMSCs showed a reasonable uptake of polystyrene nanoparticles (PS, Figure 1A). Since here only one population was detected in flow
  • impressive and may not be strong enough to divert further development. All other expression values are not affected by the presence of these particles (Figure 7). Differentiation in flow cytometry for hHSCs Differentiation of hHSCs in three lineages was determined after incubation with 300 µg/mL
  • reasonable amount by hHSCs. This is itself interesting as hHSCs have no phagocytotic properties, and the endocytotic processes in hHSCs are not known for a high turnover rate. Flow cytometry analysis showed that the particle uptake differs between the two materials, polystyrene and polylactide. Polylactide
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

  • Cornelia Loos,
  • Tatiana Syrovets,
  • Anna Musyanovych,
  • Volker Mailänder,
  • Katharina Landfester,
  • G. Ulrich Nienhaus and
  • Thomas Simmet

Beilstein J. Nanotechnol. 2014, 5, 2403–2412, doi:10.3762/bjnano.5.250

Graphical Abstract
  • -COOH or PS-NH2 nanoparticles (each 100 µg/mL) and analyzed by flow cytometry or confocal microscopy (24 h). Results are given as mean ± SEM, n = 3, *p < 0.05, **p < 0.01. Nuclei are labeled with HCS NuclearMask™ (blue), nanoparticles are stained with PMI (green), lysosomes are labeled with LysoTracker
  • stained with acridine orange (AO) and analyzed by flow cytometry. M1 gating was used to assess the number of AOlow cells with leaky lysosomes. (B) Analysis of cell viability. Cells were treated as in (A) and analyzed by XTT assay. Results are mean ± SEM, n = 3, *p < 0.05, **p < 0.01. Acknowledgements
PDF
Album
Review
Published 15 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical
  • with fixation and sectioning. The cells remain intact and can be analyzed by flow cytometry or single cell microscopy. For our studies on skin penetration of silica particles, we prepared single-cell suspensions of skin samples treated with fluorescent particles and performed flow cytometry and single
  • /streptomycin, 2% glutamine and 10% fetal calf serum. The cells grown in an incubator with 5% CO2, 100% humidity at 37 °C and incubated with the different silica particles (10 μg/mL) for 2 h. Analysis was performed by using flow cytometry and confocal laser scanning microscopy. Figure 3 was modified with
PDF
Album
Full Research Paper
Published 08 Dec 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • interactions) have been suggested [84]. As we have reported, silver nanoparticles were mostly taken up by hMSC through clathrin-dependent endocytosis and macropinocytosis but not through caveolin-dependent endocytosis, as shown by flow cytometry (scattergram analysis) [77]. From the literature it is known that
PDF
Album
Review
Published 03 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • ., number of detached magnetite crystals, and the number of nanoparticles in one endosome), we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy). Keywords: biodegradation; mesenchymal stem cells; PLLA
  • period of 14 days, primarily by means of transmission electron microscopy (TEM), in order to demonstrate their degradation. Furthermore, confocal laser scanning microscopy (CLSM) and flow cytometry were used to monitor the nanoparticle load of individual cells. As a probe we chose tailor-made PLLA
  • specified concentrations. Flow cytometry Flow cytometry was used for quantification of intracellular nanoparticles and for the analysis of cell viability. Similar to the procedures previously described [26], adherent cells were detached by trypsin (Gibco, Germany) and seeded in α-MEM at a density of 100 000
PDF
Album
Full Research Paper
Published 29 Oct 2014

Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

  • Claudia Strobel,
  • Martin Förster and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2014, 5, 1795–1807, doi:10.3762/bjnano.5.190

Graphical Abstract
  • , Germany) was used. The cells routinely tested negative for mycoplasma via PCR. Characterization of HUVEC population via flow cytometry analysis HUVEC are primary endothelial cells, which were isolated from the vein of an umbilical cord. To check the endothelial phenotype, flow cytometry analysis was
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2014

Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

  • Adriano A. Torrano and
  • Christoph Bräuchle

Beilstein J. Nanotechnol. 2014, 5, 1616–1624, doi:10.3762/bjnano.5.173

Graphical Abstract
  • flow cytometry, mass spectroscopy, electron and light microscopies [32][33][34][35][36][37][38][39]. Flow cytometry provides sound statistics due to the large number of cells evaluated in a short time. Nevertheless, it does not deliver spatial information about the position of nanoparticles interacting
PDF
Album
Full Research Paper
Published 23 Sep 2014

Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique

  • Alina Maria Holban,
  • Valentina Grumezescu,
  • Alexandru Mihai Grumezescu,
  • Bogdan Ştefan Vasile,
  • Roxana Truşcă,
  • Rodica Cristescu,
  • Gabriel Socol and
  • Florin Iordache

Beilstein J. Nanotechnol. 2014, 5, 872–880, doi:10.3762/bjnano.5.99

Graphical Abstract
  • S.C. Metav-CD S.A., 31 Rosetti Str., 020015 Bucharest, Romania Flow Cytometry and Cell Therapy Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” (ICBP), Bucharest, Romania 10.3762/bjnano.5.99 Abstract We report on the fabrication of thin coatings based on polylactic acid
PDF
Album
Full Research Paper
Published 18 Jun 2014

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • oxide nanoparticles. Flow cytometry Flow cytometry was used to determine the percentage of cells loaded with MNP. The cells were plated in six-well plates at a density of 300,000 cm−2 and allowed to attach overnight. The next day, the cells reached 70% confluence. They were then incubated with 0, 20, 40
  • , 80, 160, 320 µg/mL of SN38-loaded Fe/Fe3O4 nanoparticles in fresh medium and incubated overnight. After taking up the nanoparticles, the cells were washed three times with 1× PBS and lifted by scraping. MNP loaded cells were analyzed by flow cytometry. Side scatter was used to determine the loading
  • of MNP-SN38 platform by the double-stable Mo/Ma was determined by flow cytometry. Different concentrations of nanoparticles were loaded into the cells over 24 h, by using nanoparticle concentrations between 0 and 320 μg/mL in culture medium. After 24 h of loading, the cells were washed three times
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • or other conventional clinical methods. There was also a good correlation between DMR measurements and those obtained with flow cytometry and Western blot analysis (Figure 7c). Importantly, the DMR detection platform not only required far fewer cells than either of the alternative approaches, but
  • well with standard molecular analyses, such as flow cytometry and Western blot, but required substantially fewer cells. (d) Molecular profiling of fine-needle aspirates of mouse tumor xenografts. Three cancer markers (Her2/neu, EGFR, EpCAM) were profiled to increase the accuracy of diagnosis
PDF
Album
Review
Published 16 Dec 2010
Other Beilstein-Institut Open Science Activities