Search results

Search for "interfaces" in Full Text gives 453 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • : Heterojunctions, which are the interfaces between two different semiconductors, increase the charge carrier separation efficiency with increased kinetics and strong redox ability. This enhances the photocatalytic capabilities of photocatalysts [101][119][156][157][158][159][160][161]. Depending on how the
PDF
Album
Review
Published 03 Mar 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • boundary conditions can successfully describe the interfaces between, among other things, a superconductor and weak or strong ferromagnets [22][23][24], normal metals [25][26][27], and half-metals [28]. The first attempts to implement nonstationary, adiabatic, quasiclassical boundary conditions were made
PDF
Album
Full Research Paper
Published 21 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • high-resolution nanoscale measurements of impurity concentration and defect level distributions at the surfaces and interfaces of various semiconductor materials and devices. (a) Schematic of the metal tip–gap–semiconductor sample. (b) Energy band diagram of the metal–gap–semiconductor sample. Emission
PDF
Album
Full Research Paper
Published 31 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Adrien Chauvin Walter Puglisi Damien Thiry Cristina Satriano Rony Snyders Carla Bittencourt Plasma-Surface Interaction Chemistry, University of Mons, 23 Place du Parc, 7000 Mons, Belgium Chemistry of Surfaces, Interfaces and Nanomaterials, Faculty of Sciences, Université libre de Bruxelles, 50
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • -transparency barriers at NS interfaces [20][21] and later extended to the case of arbitrary barrier transmissions [22][23][24][25]. Positively cross-correlated non-local shot noise was indeed observed in a number of experiments [26][27]. Real-time observation of Cooper pair splitting was also reported in a
PDF
Album
Full Research Paper
Published 09 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • interfaces of nanofilms on the magnetic properties). Experimental studies on the subject of work are associated with a number of difficulties, and related results are planned to be published in following papers. Problem statement for the complex study of cobalt and niobium heterostructures. The sketch of the
PDF
Album
Full Research Paper
Published 04 Jan 2023

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • this subtraction are shown in Figure 5a. In all the data, a voltage drop occurs at the Au electrode–solid electrolyte interfaces, and the potential change in the solid electrolyte region is constant. These results are direct experimental evidence that the electric field in the solid electrolyte was
  • voltage drop across the Au1 electrode–solid electrolyte interface was greater than across the Au2 electrode–solid electrolyte interface. This asymmetric potential drop arises from the differences in the electrochemical properties of the two interfaces. As the DC voltage increased, the potential of the Au2
  • reduction of Ti ions. These results prove that, even if the DC voltage is accurately controlled, the electrode potential depends on the electrochemical properties of the interfaces, and that simply measuring the potential relative to ground using KPFM is not sufficient to analyze the electrochemical system
PDF
Album
Full Research Paper
Published 19 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • following values n0 = 1021−1023 m−3, μ = 10−15 to 10−17 m2/Vs. The analysis of the I–V characteristics within the framework of Schottky barrier formation makes it possible to estimate the height of potential barriers at the metal/polymer interfaces utilizing the Richardson expression [18]: where T is the
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • light, which can be explained as follows: The photocurrent density of MoS2/TNAs promptly increased because of the efficient separation of the e−–h+ pairs at the interfaces between TNAs and MoS2 [58] and the rapid transfer of the photo-induced electrons from MoS2 to the TNAs electrode [59]. This result
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • θ↑ and θ↓. In other words, we are not considering spin-active interfaces. In the case of spin-active barriers, one should use the boundary conditions introduced in [87][97][98], rather than the standard Kupriyanov–Lukichev boundary conditions in Equation 6 and Equation 7. The parameter γ determines
  • . Analytical result for the interfaces with low transparency and qualitative picture Here, we employ the analytical expression (Equation 20) obtained in the limit of low proximity and thin F layer. Considering the problem in such limit makes it possible to use a simple expression for the qualitative
PDF
Album
Full Research Paper
Published 01 Dec 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Salvinia-like biomimetic surfaces are permanent over years, like in many air–water interfaces a neustonic microbial biofilm (“Bacterioneuston”), usually associated with fungi, becomes established under non-sterile and non-turbulent conditions rather fast. On the MSM already after one month the air–water
PDF
Album
Full Research Paper
Published 21 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • obvious biological models are no guarantee for success, and that it is difficult to arrive at a formalised biomimetic working scheme. Rather, a broad understanding of biological function and its complexity is beneficial. Keywords: air-retaining interfaces; bioinspiration; biomimetics; biomimicry; blast
  • furnace; Collembola; gas/liquid interfaces; interfacial effects; persistant air layers; pits; Salvinia molesta; surfaces; tuyère failure; water transport in plants; xylem; Young–Laplace equation; Introduction and Motivation The basic concept of biomimetics is the derivation of technical applications from
  • , persistence of the gas pockets within the structured surface should be energetically favourable over their displacement. The interfaces that separate the gas pockets from the liquid iron should form autonomously, that is, without the need for external manipulations. The typical dimensions of the structures
PDF
Album
Perspective
Published 17 Nov 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • wetting properties of a natural leaf surface. Keywords: recrystallization; surface properties; wax composition; wetting; wheat; Introduction Cuticle One of the largest interfaces on earth is formed by thin layers that are a few nanometers to micrometers thin, namely the wax layers of the plant cuticle
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • of topography and surface properties of interfaces in a wide range of environments [1]. Kelvin probe force microscopy (KPFM) utilizes the application of a bias and a conductive probe to map the local electrical properties of an interface at the nanoscale [2], allowing for the determination of the
  • of corrosion, sensing, solar cells, energy storage devices, and bioelectric interfaces [3][4][5][6][7][8]. Since its first application in 1991 [2], there have been significant developments in the field of KPFM [6][9][10] with significant advances in both temporal [11][12][13][14] and spatial
  • ]. Whilst the application of DC bias is not required for OL operation it can still be utilized to allow CPD to be determined via bias sweeps [28][40] or to investigate gate-dependent potential profiles of interfaces [22][41][42]. There are a wide range of OL KPFM techniques beyond those examined in this
PDF
Full Research Paper
Published 12 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , Germany Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth
PDF
Album
Review
Published 08 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • –substrate interfaces, which promotes the wetting of the gallium melt [14][15]. Similarly, room-temperature-liquid eutectic Ga–In and eutectic Ga–In–Sn alloys have been reported to reactively wet thin indium and tin foils [16]. Also in [16], the authors demonstrated that the wetting of the same liquid alloys
  • and calculate the corresponding work of adhesion Wad as suggested in [19] for solid interfaces. The authors measured the adhesion between atomically smooth quasicrystalline surfaces of TiN-coated AFM tips in ultrahigh vacuum by analyzing the pull-off force during atomic force spectroscopy measurements
  • the surface energy of the tip material, the lower the interfacial energy between the tip and the Ga–In–Sn eutectic melt becomes. This result is so far expected as forming a tip–liquid interface rids areal parts of the tip–vapor and the Ga–In–Sn eutectic melt–vapor interfaces and, thus, decreases the
PDF
Album
Full Research Paper
Published 23 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • defined structures and flow characteristics. Thus, they are good experimental tools for the observation of crystallization process. The interfaces among the laminar fluids in microfluidic channels can be recognized as soft boundaries of crystallization zones. In the reaction–diffusion zone confined by
  • liquid–liquid interfaces (soft boundary), crystallization of a 2D coordination polymer ([Cu(4,4′-bpy)](NO3)2, 4,4′-bpy = 4,4′-bipyridine) was investigated [102]. By changing the flow rate ratio between the focusing streams and the reagent fluids, the size and concentration gradient of the reaction
  • into void-free structures [137]. The unavoidable interparticle voids limit interparticle interactions among the crystals, making the assemblies difficult to control. To solve this problem, assembling was tried in confined spaces, such as droplets, liquid–liquid interfaces, on the surface of substrates
PDF
Album
Review
Published 12 Aug 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
PDF
Album
Full Research Paper
Published 20 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • -circuit model including the series resistances of electrolyte and FTO substrate (Rs) and the charge-transfer resistances on the CE/electrolyte and TiO2/dye/electrolyte interfaces (Rct1 and Rct2) associated with the corresponding constant phase elements (CPE1 and CPE2) as described in Figure 6 (Figure 6
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • the multilayer hybrid structures in the frame of Usadel equations [59]: with Kupriyanov–Lukichev boundary conditions [60], at the S/FM interfaces. Here G and F are normal and anomalous Green's functions, Δ is a pair potential (superconducting order parameter), ω = πkBT (2n + 1), where n is a natural
PDF
Album
Full Research Paper
Published 18 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • and reaches 40% on average. Visible maxima and minima result from multiple interferences of the light reflected from interfaces between air and thin film and thin film and SiO2 substrate. From the optical spectra, an optical bandgap width of about 2.8 eV was determined for the allowed indirect
  • (3.34 eV) for TiO2 were determined for a reference (about 100 nm thick) amorphous TiO2 layer, prepared in the magnetron sputtering process using the same deposition system with the coefficient pwmTi = 100% during the entire sputtering process. The analysis allowed us to conclude that both interfaces
PDF
Album
Full Research Paper
Published 24 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • friction with increasing immersion time reveals the interrelation of relevant physicochemical processes, namely the production of metal cations by surface dissolution at the interfaces of two layers, the diffusion of ions to the interface of outer layer and solution, the formation of hydrates at the
  • vs Ag/AgCl are shown for comparison. (d) Schematic illustration of physicochemical processes at the interfaces of the surface oxide film related to the surface dissolution during corrosion. M+ represents dissolved metal cations, M(OH) denotes hydrates formed by reactions of metal cations with the
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • addressability, which is often a matter of appropriate interfaces and device design. Here, we compare two promising designs to build solid-state electronic devices utilizing the same functional unit. Optically addressable Ru-terpyridine complexes were incorporated in supramolecular wires or employed as ligands
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • Berlin, Berlin, Germany) for their support in the work with microorganisms and Dr. Dimitriya Borisova (Max-Planck Institute of Colloids and Interfaces, Golm, Germany) for SEM imaging. Funding We acknowledge the financial support from the European Community (EFRE-ProFIT 10139827, 10169193).
PDF
Album
Full Research Paper
Published 24 Jan 2022
Other Beilstein-Institut Open Science Activities