Search results

Search for "magnetic properties" in Full Text gives 236 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • topography of the photoresist PMMA. Many more examples can be envisioned. The He ion beam is known to change the mechanical [37], electrical [38], and magnetic properties of materials [39]. AFM can be used to measure mechanical properties using contact resonance [40][41] or off-resonance tapping techniques
  • [24] with very high resolution. Magnetic properties of nanostructures can be measured using magnetic force microscopy (MFM) [42], and a host of AFM techniques are available to measure electrical properties of samples (e.g., conductive AFM (cAFM) [43], scanning capacitance microscopy (SCM) [44], and
PDF
Album
Full Research Paper
Published 26 Aug 2020

Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures

  • Yury Khaydukov,
  • Sabine Pütter,
  • Laura Guasco,
  • Roman Morari,
  • Gideok Kim,
  • Thomas Keller,
  • Anatolie Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2020, 11, 1254–1263, doi:10.3762/bjnano.11.109

Graphical Abstract
  • pattern with coexisting Nb(100) and Nb(110) phases (Figure 3b). Magnetic properties SQUID measurements Figure 4a shows hysteresis loops measured on sample s3 at T = 300 K and T = 13 K. At room temperature the sample saturates to a magnetic moment msat = 12 μemu above a saturation field of only Hsat = 50
PDF
Album
Full Research Paper
Published 21 Aug 2020

Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH

  • Andrey V. Shibaev,
  • Petr V. Shvets,
  • Darya E. Kessel,
  • Roman A. Kamyshinsky,
  • Anton S. Orekhov,
  • Sergey S. Abramchuk,
  • Alexei R. Khokhlov and
  • Olga E. Philippova

Beilstein J. Nanotechnol. 2020, 11, 1230–1241, doi:10.3762/bjnano.11.107

Graphical Abstract
  • difficult to remove or replace. Therefore, the elaboration of new and facile methods for synthesizing magnetic iron oxide nanorods, especially in the absence of additives, still poses a challenge. One of the proposed methods [28][29][30][37] is based on the exploitation of the magnetic properties of iron
  • batteries [8], preparation of hybrid organic–inorganic nanocomposites, and gels with polymer or surfactant-based matrices [20]. Among these applications, elongated particles (particularly nanorods) have many advantages over spherical nanoparticles [11][21][22]. Nanorods often have stronger magnetic
  • properties and a larger length-scale of the locally induced magnetic field in comparison to nanospheres with a similar volume, providing an enhanced MRI contrast [11][19][23], higher specific adsorption rate in magnetic hyperthermia [13], and better separation efficiency in magnetic separation of immune
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • nanoparticle coating plays an important role in the nanoparticle dispersion stability and biocompatibility. However, theoretical studies in this field are lacking. In addition, the ways in which the nanoparticle coating influences the magnetic properties of the nanoparticles are not yet understood. In order to
  • nanoparticles to the acidic environment of living organisms, certain structural degradation processes occur due to the corrosion of nanoparticle surfaces. This biodegradation in acidic media leads to significant changes in the nanoparticle magnetic properties over time [9]. Since the nanoparticle surfaces are
  • in direct contact with blood and other tissues, a biocompatible and nontoxic coating needs to be placed around the nanoparticles to prevent biodegradation processes. The coating thickness can significantly affect the magnetic properties and the hyperthermia of the nanoparticles. The coating is
PDF
Album
Full Research Paper
Published 12 Aug 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • 1617 cm−1, corresponding to the benzene ring stretching vibration, which indicates that DHCA successfully modified the FGDA nanocubes. In order to verify the magnetic properties of FGDA nanocubes, the field-dependent magnetization (M–H) curves (Figure 2j) were obtained from the physical property
PDF
Album
Full Research Paper
Published 08 Jul 2020

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • helical chitosan microfibers exhibited an average Young’s modulus of 14 MPa. By taking advantage of the magnetic properties of the feedstock solution, the production of the helical fibers could be automated. The fabrication of the helical fibers was achieved by utilizing the magnetic properties of the
  • solidification of the fiber matrix was necessary to form stable fibers. The magnetic properties of wet-spun fibers can be tuned by the amount of magnetic IOPs within these fibers. Therefore, controlling the IOP concentration is critical for magnetically reeling these fibers into a helical construct. Therefore
  • ] techniques. Vibrating-sample magnetometer (VSM) analysis was used to characterize the magnetic properties of the wet-spun IOP-embedded chitosan fiber networks (Figure 1C). As expected, the sample magnetization could be controlled by the IOP concentration (Figure 2). At 10 mg·mL−1 (the maximum IOP
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • ) are based on magnetite (Fe3O4) or maghemite (γ-Fe2O3) molecules encapsulated in polysaccharides, synthetic polymers or monomer coatings and have a size range from 1 to 100 nm [21][182]. SPIONs possess interesting magnetic properties and some formulations have already been approved as MRI contrast
PDF
Album
Review
Published 04 Jun 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • the proximity effect [28]. This may shift the material operation temperature close to or even below the LHeT. With the iron content x in Pd1−xFex alloy below 0.08 its magnetic properties meet all the requirements for the F-layer in superconducting spintronic S/F/S-type structures, i.e., it is a weak
  • ferromagnet with a low coercive field [41]. It is important that magnetic properties of epitaxial Pd1−xFex films are precisely controlled with the iron content x [41], and a perfect cube-on-cube epitaxy is realized with either the MgO(001) substrate or with the superconducting VN layers in any sequence
PDF
Album
Full Research Paper
Published 15 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • , Universidad de Zaragoza, 50018 Zaragoza, Spain 10.3762/bjnano.11.51 Abstract We studied in detail the in-plane magnetic properties of heterostructures based on a ferroelectric BaTiO3 overlayer deposited on a ferromagnetic La2/3Sr1/3MnO3 film grown epitaxially on pseudocubic (001)-oriented SrTiO3, (LaAlO3)0.3
  • read/write hard disks, actuators, etc. [9][10]. In multilayered films, both electrical and magnetic properties of these ferroic perovskites are strongly affected by crystal distortions originated by lattice-misfit strain at the film/substrate interface [11][12][13][14]. For LSMO and other manganites
  • , the effect of the substrate-induced strain on its magnetic properties in single-layer configuration has been widely studied, particularly in regards to the influence of strain on the magnetic anisotropy [15][16]. Depending on the type and magnitude of the imposed biaxial strain (compressive or tensile
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • electrons. In general, the atoms prefer to adsorb above a Mo atom, however Sc, Ti and Mn prefer a hollow site inside the Mo–S hexagon. Overall, it was concluded that the band structure and magnetic properties of 2D MoS2 can be modified by adsorbing different transition metals [26]. Li et al. [29] and
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • studying the flow of NPs. Iron oxide NPs are extensively investigated in targeted therapy and drug delivery applications owing to their tunable size, surface functionalities, and magnetic properties. In this study, we synthesized four different polyvinylpyrrolidone (PVP)/polyethyleneimine (PEI)-coated iron
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • critical importance of interfaces. In the current issue, from “simple” to more elaborated, we here observe the importance of the polyol method, the non-hydrolytic or colloidal approach, and ordered mesopore templating techniques. In “Tailoring the magnetic properties of cobalt ferrite nanoparticles using
PDF
Editorial
Published 20 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • three preferential directions 60° apart from another. The magnetic properties and the luminescence of the nanochains can be detected without the need of surface-dedicated instrumentation. The intermediate value of the observed luminescence lifetime of the deposits (132 µs) compared to that of the bulk
  • tungsten oxide nanowires assembled on mica [21]. Insights are provided to link this ordering to the one observed in crystalline bulk [Tb(hfac)3·2H2O]n [22]. We also demonstrate that the luminescent and magnetic properties of the pristine compound are preserved on the surface, thus confirming the nature of
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • -shell support thickness of about 50 nm was reported with a high ferrite loading capacity of about 30–50 wt % with particle diameters between 9 and 17 nm (at the external carbon layer). Such a magnetic nanoformulation was found to be useful for enzyme lysozyme immobilization. The magnetic properties of
  • consistent with the TEM analysis. For the copper ferrite nanoparticles, a homogeneous mixed metal oxide formation occurs as a major proportion coexisting with Cu nanoclusters (Supporting Information File 1, Figure S1). The magnetic properties of CuFe2O4/HYPS nanocomposites were measured using VSM (Figure 5
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • allowed us to determine the relative amount of iron located in the core and the surface layer of the nanoparticles. The obtained results are important for understanding the structural and magnetic properties of iron oxide nanoparticles used as T2 contrast agents for MRI. Keywords: iron oxides; Mössbauer
  • article is to investigate the crystal structure and magnetic properties of iron oxide nanoparticles, which have already been proven to be effective as MRI contrast agents as studied by different techniques, including XRD, Mössbauer, Raman and 57Fe NMR spectroscopy. The question of the effect of the type
  • of coating on the particle size and their magnetic properties is also raised. It has been shown that different types of coatings shift the magnetic blocking temperature [10][13][14]. In our present study, we observe a superparamagnetic transition of coated and uncoated samples in the temperature
PDF
Album
Full Research Paper
Published 02 Oct 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • suppress the inclined columnar growth induced by oblique angle deposition. Thus, the ferromagnetic thin films obliquely deposited by HiPIMS deposition exhibit different magnetic properties than dcMS-deposited films. The results demonstrate the potential of the HiPIMS process to tailor the material
  • -based shape memory alloy thin films utilized in micro-actuator applications [9]. It is well known that microstructure, texture and structure of thin films can have significant influence on the magnetic and other functional properties of the films. The magnetic properties of evaporated [10][11
  • ], electrodeposited [12][13][14][15], chemical-vapor-deposited [16], and dc [17][18][19] and rf [20][21][22] magnetron sputtered thin nickel films have been studied for almost ten decades. This has included studies of the magnetic properties while varying film thickness [10][20], grain size, substrate material [11
PDF
Album
Full Research Paper
Published 20 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • distinguish between the more stable face-centered cubic (fcc) [12] and the less stable hexagonal close-packed (hcp) [13] Ni phase. The magnetic properties of fcc Ni nanoparticles are similar to the bulk material with saturation magnetization values of 50 emu/gNi at 300 K [14]. Hcp Ni nanoparticles show very
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • electronic structure and magnetic properties, and they deserve to be further studied and applied in spintronics devices. In this study, we built a CPP-SV device employing a half-metallic inverse Heusler alloy Ti2NiAl as the electrode and Ag as the spacer. Different atomic-terminated interfaces are considered
  • . We performed the first-principles density functional theory combined with nonequilibrium Green’s function to investigate the interfacial electronic structure, magnetic properties and MR ratio of the device. Results and Discussion Our investigated device is a two-probe device, where Ti2NiAl is
  • largest MR value and can be regarded as a promising candidate for furture spintronics devices. Conclusion By employing first principles calculations combined with the nonequilibrium Green’s function, we studied the interfacial magnetic properties, interfacial electronic structure and spin transport
PDF
Album
Full Research Paper
Published 08 Aug 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • ultrafast state initialization for algorithmic quantum computers and quantum neural networks as well as in the fast control of the magnetic properties of media from Josephson meta-atoms. (a) The potential energy and the eigenfunctions (with energies E1 ,E2, E3, E4) of the three-junction qubit (described in
PDF
Album
Full Research Paper
Published 29 Jul 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • collective magnetic behavior. Studies show that the magnetic properties are strongly affected by the magnetic anisotropy of NPs and by interparticle interactions that are the result of the collective magnetic behavior of NPs. Here we study these effects in more detail. For this purpose, we prepared CoxFe3
  • doping on structure, morphology and magnetic properties of CoxFe3−xO4 samples was investigated. In particular, we examined the interparticle interactions in the samples by δm graphs and Henkel plots that have not been reported before in literature. Finally, we studied the hyperthermia properties and
  • affect the magnetic properties and application fields of ferrite nanoparticles [1][4]. For example, NPs to be applied for data storage or magnetic recording must have a high coercivity, which is directly related to their magnetic anisotropy (the high coercivity keeps the recorded bits from being
PDF
Album
Full Research Paper
Published 03 Jul 2019

Molecular attachment to a microscope tip: inelastic tunneling, Kondo screening, and thermopower

  • Rouzhaji Tuerhong,
  • Mauro Boero and
  • Jean-Pierre Bucher

Beilstein J. Nanotechnol. 2019, 10, 1243–1250, doi:10.3762/bjnano.10.124

Graphical Abstract
  • accessible. This technique allows one to study locally the magnetic properties, as well as other elementary excitations and their mutual interaction. In particular a clear correlation is observed between the Kondo resonance and the vibrations with a strong incidence of the Kondo correlation on the
PDF
Album
Full Research Paper
Published 19 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • strong electron donating and accepting properties that have proved to be candidates for the formation of mixed charge-transfer (CT) crystals exhibiting interesting electric or magnetic properties [9][10]. Investigations on mixed ordered monolayers on surfaces of such molecules that are known as
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • refluxing (3, 6 and 15 h). The structure, microstructure and composition of the resulting NPs were then investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF), respectively. The magnetic properties were also evaluated using standard
  • key parameters to control the size and the magnetic properties of the resulting nanoparticles. We believe that these results provide relevant insights to the design of efficient magnetic and magnetostrictive nanoparticles that can be further functionalized by coupling agents, to be contacted with
  • magnetic properties and there is no literature at all regarding non-stoichiometric NPs. Artus et al. produced stoichiometric NPs of various sizes (from 2.4 to 6.2 nm) depending on the hydrolysis ratio, starting from iron chloride and cobalt acetate in 1,2-propane-diol [22]. The blocking temperature (TB) of
PDF
Album
Full Research Paper
Published 04 Jun 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • seen that the diameter of the dispersed nanoparticles is about 100 nm, and the aggregation of the nanoparticles are caused by the magnetic properties of the FNOPs. Figure 4d and 4e show the results observed under a transmission electron microscope (TEM), and the measurement scales are 200 and 100 nm
PDF
Album
Full Research Paper
Published 20 May 2019
Other Beilstein-Institut Open Science Activities