Search results

Search for "morphological changes" in Full Text gives 78 result(s) in Beilstein Journal of Nanotechnology.

Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

  • Christa Schimpel,
  • Oliver Werzer,
  • Eleonore Fröhlich,
  • Gerd Leitinger,
  • Markus Absenger-Novak,
  • Birgit Teubl,
  • Andreas Zimmer and
  • Eva Roblegg

Beilstein J. Nanotechnol. 2015, 6, 1457–1466, doi:10.3762/bjnano.6.151

Graphical Abstract
  • electron microscopy (SEM) was used to evaluate morphological changes of cell surface architectures and examine protrusive surface structures including microvilli. For this, specimens were prepared similar as described previously [62]. After cultivation in transwell® systems cells were washed twice with PBS
PDF
Album
Full Research Paper
Published 06 Jul 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • cell growth, cell cycle arrest and morphological changes. Results Nanoparticle physicochemical properties PLGA NPs were prepared by a single emulsion solvent evaporation method and stabilized with Pluronic®F127. The obtained results for mean the diameter, polydispersity index (PDI) and zeta potential
  • calcitriol remained stable at release conditions throughout the experiment period. Cellular uptake of PLGA NPs and calcitriol-induced morphological changes The internalization of fluorescent C6–calcitriol–PLGA NPs by S2-013, hTERT-HPNE and A549 cells was evaluated by confocal microscopy. Counterstaining of
  • to the endo-lysosomal escape, with most of the PLGA NPs localized in the cytoplasm. However, it is not possible to distinguish this due to autofluorescence in the pancreatic cells and extensive morphological changes. As can be seen in Figure 3C,F, pancreatic cells treated with calcitriol–PLGA NPs at
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence

  • Yuliang Wang,
  • Huimin Wang,
  • Shusheng Bi and
  • Bin Guo

Beilstein J. Nanotechnol. 2015, 6, 952–963, doi:10.3762/bjnano.6.98

Graphical Abstract
  • out. Moreover, the method was applied to evaluate the morphological changes occurring during coalescence. Experimental NB imaging A sample was prepared by spin coating a thin film of PS on a silicon (100) substrate at a speed of 500 rpm. The substrate was cleaned in a sonic bath of acetone and then
  • rate of 2 Hz and the scan angle was 90°. To study the morphological changes occurring during NB coalescence, higher scanning loads with setpoints of 85% (6.2 nm), 79% (5.7 nm), and 66% (4.8 nm) were applied for a given 2 × 2 μm scanning area. After each high-load scan, the 95% setpoint was selected to
  • of the AFM tip [46]. One can see that tip convolution leads to an overestimation of the radius of curvature. Assuming the NB heights are not influenced by the tip shape, the NB width and contact angle can then be obtained. The proposed method was used to study morphological changes in NBs in terms of
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • minimal beam current to prevent morphological changes. Conclusion We have studied the electron-stimulated O2 purification of PtC EBID deposits and have shown that the process can be extended to room temperature. Electron beam current and energy studies suggest the process is governed by a dynamic process
PDF
Album
Full Research Paper
Published 08 Apr 2015

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • that the Cu–S bonds exhibit a covalent component. In fact, such an interaction between Cu and S can also be understood from the deformation density, as shown in Figure 3b. The DFT results show that an interaction between Cu and S indeed exists. Figure 4 shows the morphological changes of the Cu1.8S
PDF
Album
Full Research Paper
Published 01 Apr 2015

In situ observation of biotite (001) surface dissolution at pH 1 and 9.5 by advanced optical microscopy

  • Chiara Cappelli,
  • Daniel Lamarca-Irisarri,
  • Jordi Camas,
  • F. Javier Huertas and
  • Alexander E. S. Van Driessche

Beilstein J. Nanotechnol. 2015, 6, 665–673, doi:10.3762/bjnano.6.67

Graphical Abstract
  • performed with LCM-DIM with a vertical resolution of about 1 nm over a wide field of view (ca. 0.3–2 mm). Although it only provides qualitative height information [31], morphological changes on mineral surfaces are suitably monitored. Additionally, owing to the relatively fast data acquisition (ca. 9.6 s to
PDF
Album
Full Research Paper
Published 05 Mar 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • . These findings, which are in correlation with the morphological changes observed by SEM and AFM imaging, underline the positive effect of the mild power plasma conditions on the nanofibrous scaffolds in terms of surface topography. Chemical characterization of the plasma-treated scaffolds As can be
PDF
Album
Full Research Paper
Published 22 Jan 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • Figure 4. In the left panel (Figure 4a), a SEM image of the CNF-AFM probe before the line patterning by LAO-AFM depicted in Figure 4b is shown. It is compared against a SEM image of CNF-AFM probe after LAO-AFM in the right panel (Figure 4c). Morphological changes of the CNF could not be noticed by SEM
PDF
Album
Full Research Paper
Published 19 Jan 2015

Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces

  • Miao Yu,
  • Nico Strohmeyer,
  • Jinghe Wang,
  • Daniel J. Müller and
  • Jonne Helenius

Beilstein J. Nanotechnol. 2015, 6, 157–166, doi:10.3762/bjnano.6.15

Graphical Abstract
  • replaced after characterizing 4 cells on each coating. If a cell showed morphological changes during the experiments, it was discarded. Adhesion forces were extracted from force–distance curves using JPK data processing software. Fluorescence microscopy and UV–vis spectroscopy Fluorescence microscopy was
PDF
Album
Full Research Paper
Published 14 Jan 2015

Morphology, structural properties and reducibility of size-selected CeO2−x nanoparticle films

  • Maria Chiara Spadaro,
  • Sergio D’Addato,
  • Gabriele Gasperi,
  • Francesco Benedetti,
  • Paola Luches,
  • Vincenzo Grillo,
  • Giovanni Bertoni and
  • Sergio Valeri

Beilstein J. Nanotechnol. 2015, 6, 60–67, doi:10.3762/bjnano.6.7

Graphical Abstract
  • Ce3+ concentration is lower than in the NPs. This significant difference can be ascribed to structural and morphological changes occurring in the non-epitaxial film at increasing temperature, as shown in Figure 6 in which STM images of the non-epitaxial film before and after the reduction cycle are
PDF
Album
Full Research Paper
Published 07 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • , non-invasive biosensor, which permits the monitoring of morphological changes of living cells acting as dielectric bodies in real time [26][27]. The method measures the complex impedance, Z, of a small working electrode and a larger counter electrode (Supporting Information File 1, Figure S3). The
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • (Figure 3B) or 1.0 µg·mL−1 Ag+ ions (Figure 3D) revealed no significant morphological changes compared with cells cultured without silver (Figure 3C). However, a large decrease in the number of formed lipid droplets was observed in the presence of a high concentration of Ag-NP or Ag+ ions (Figure 3B and
  • -NP displayed no distinct morphological changes, but a decrease in the differentiation of hMSCs (Figure 6B) in contrast to cells cultured without silver (Figure 6C) was observed. In the presence of Ag+ ions, no significant change in calcium accretion was measured (Figure 6D) in contrast to the
PDF
Album
Full Research Paper
Published 10 Nov 2014

Rapid degradation of zinc oxide nanoparticles by phosphate ions

  • Rudolf Herrmann,
  • F. Javier García-García and
  • Armin Reller

Beilstein J. Nanotechnol. 2014, 5, 2007–2015, doi:10.3762/bjnano.5.209

Graphical Abstract
  • medium is of crucial importance for biological studies of ZnO-NP. In this context, the effect of water itself must be distinguished from that of the phosphate ions. Aggregation of ZnO nanoparticles in water was attributed to partial dissolution [9]. Morphological changes of ZnO nanocrystals under the
PDF
Album
Full Research Paper
Published 05 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • correlated with morphological changes of cells as well as biochemical reactions in cellular media, such as changes in the intracellular distribution of Ca2+ during apoptosis. Such investigations require spectroscopic methods which permit high resolution imaging combined with selective probing. Imaging by
  • thick (up to 10 µm) and wet samples can be studied. In spite of these advantages, the number of available setups is limited, so that STXM has only been applied to a small number of biological or biomedical samples in the past, including the investigation of local morphological changes in cells [75]. We
  • were identified in the nucleus [76]. Within the resolution of STXM no morphological changes of the cells were found. The particles that were taken up into the cells appear to be slightly aggregated or at least associated to larger units (see Figure 5B in comparison to particles imaged by TEM or STXM
PDF
Album
Review
Published 03 Nov 2014

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • detected at 680–750 nm). Transmission electron microscopy (TEM) TEM was performed to precisely localize the intracellular particles and characterize morphological changes. For preparation, cells were seeded out in a 24-well plate (Greiner, Germany) containing three sapphire disks, surface C-coated. Cells
  • MSCs), the uptake of PLLA/magnetite NPs in the cells does not lead to any morphological changes of the cells over the whole observation period. Cell morphology is not affected by the incubation. Generally, the particles were located inside the cells. After 24 h (Figure 2A), the PLLA nanoparticles were
PDF
Album
Full Research Paper
Published 29 Oct 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • with Se/Sn = 1 (where maximum burrowing was seen) was also performed in order to gain quantitative information, for example, particle size, depth of burrowing, etc. The morphological changes on the surfaces were studied using a multimode Nanoscope IIIa atomic force microscopy (AFM) in tapping mode. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • cultures; additionally, the electrical stimulation resulted in affecting the regulation of cytoskeleton protein related to cellular mobility, such as actin, resulting in morphological changes in cellular edges. Sahni et al. [139] compared the neurite outgrowth of rat primary cortical neurons cultured on
PDF
Album
Correction
Review
Published 23 Oct 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • intravenous introduction of a nanoparticle colloid was described earlier [31][32][33]. This confirmed adaptive reactions of the mouse organism. Morphological changes of the organ cells may result from the direct action of nanoparticles on the cells, or may also indirectly result from impaired microcirculation
PDF
Album
Full Research Paper
Published 08 Oct 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • aggregation. ASP affect cell vitality in a size- and dose-dependent manner To investigate the (patho)biological effect of the ASP, we used independent experimental approaches. As a rapid and inexpensive screening method for cytotoxicity, we first employed light microscopy to analyze morphological changes of
  • the Caco-2 cells following exposure to the different ASP (Figure 2). Exposure to ASP30 or ASP30L under serum free conditions induced dose- and time-dependent significant morphological changes, such as loss of a structured cell shape, disruption of the monolayer, and loss of adhesion, which is
  • cells served as a negative control to correct for background fluorescence. Transmission electron microscopy (TEM) images of representative ASP used in the study. Scale bar = 100 nm. Microscopy-based assessment of cell vitality by analyzing ASP-induced morphological changes. (A/B) Caco-2 morphology was
PDF
Album
Full Research Paper
Published 27 Aug 2014

Restructuring of an Ir(210) electrode surface by potential cycling

  • Khaled A. Soliman,
  • Dieter M. Kolb,
  • Ludwig A. Kibler and
  • Timo Jacob

Beilstein J. Nanotechnol. 2014, 5, 1349–1356, doi:10.3762/bjnano.5.148

Graphical Abstract
  • –reduction cycles [15][16]. Thus, morphological changes between thermodynamically stable structures can be induced for example by temperature, electrode potential or specific adsorption. Unlike reconstruction phenomena, the faceting of surfaces leads to structures, which exist in the bulk lattice already. In
PDF
Album
Full Research Paper
Published 25 Aug 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • -binding proteins, such as filamin, into GUVs of 20 μm diameter. K+ ions were introduced into the vesicles by ionophores, thus triggering actin polymerisation. This polymerisation process was observed to induce morphological changes of the initially spherical vesicles towards irregular, asymmetric shapes
  • regulation of morphological changes in such synthetic cells was explained by a balance of actomyosin cortical tension and mechanical resistance to rupture [71]. For the functional encapsulation of cytoskeletal proteins into lipid vesicles high physiological salt levels are mandatory and the fabrication
  • stable holes and transform into cup-shaped liposomes, which finally turned into lipid bilayers (Figure 7) [81]. Reversion of these morphological changes could be achieved by diluting talin in the surrounding medium, which resulted in the lipid bilayers to transform back into closed liposomes. In future
PDF
Album
Review
Published 01 Aug 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • clearly indicates that increase in the photocatalytic efficiency of the synthesized Ag–ZnO hybrid plasmonic nanostructures is mainly due to citrate-assisted morphological changes and changes in plasmonic coupling due to different level of Ag nanoparticle decoration. Beyond a threshold concentration
PDF
Album
Full Research Paper
Published 15 May 2014

DNA origami deposition on native and passivated molybdenum disulfide substrates

  • Xiaoning Zhang,
  • Masudur Rahman,
  • David Neff and
  • Michael L. Norton

Beilstein J. Nanotechnol. 2014, 5, 501–506, doi:10.3762/bjnano.5.58

Graphical Abstract
  • any morphological changes in the DNA origami structure on the modified MoS2 surface in ambient environment. No significant changes were noted after 24 h and 48 h, respectively (Figure 3c and Figure 3d), indicating that the 1-pyrenemethylamine layer does not experience significant water accumulation
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2014

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • , homogeneous, thin, and agglomeration-free cathode, which exhibited reduced structural changes during the discharge–charge cycles. Morphological changes and the stability of the electronic conductivity of the sulfur cathodes upon cycling were detected by means of SEM, material-sensitive AFM and conductive
  • Li+ ions on the surface of the anode [31][32]. This time, low-order polysulfides form and settle down on the surface of the lithium anode. They cannot be oxidised back and therefore block the active sites of the anode surface [31]. As shown in Figure 2c and Figure 2d, the morphological changes upon
PDF
Album
Full Research Paper
Published 04 Oct 2013

Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

  • Hamonangan Nainggolan,
  • Saharman Gea,
  • Emiliano Bilotti,
  • Ton Peijs and
  • Sabar D. Hutagalung

Beilstein J. Nanotechnol. 2013, 4, 325–329, doi:10.3762/bjnano.4.37

Graphical Abstract
  • contributes to the composite toughness. The addition of FBC into Mater-Bi containing PEVOH as plasticizer for the preparation of Mater-Bi/FBC bionanocomposites showed morphological changes on the surface, as shown in Figure 2. It can be seen that FBC is easily incorporated in the Mater-Bi matrix and gives a
PDF
Album
Full Research Paper
Published 23 May 2013
Other Beilstein-Institut Open Science Activities