Search results

Search for "phase separation" in Full Text gives 64 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • processes give rise to the formation of a microemulsion finally leading to macroscopic phase separation. It was concluded that the phosphate-driven self-assembly processes are accelerating the silica-precipitation processes. However, the self-assembly processes going on in LCPA/silicic acid/phosphate
PDF
Album
Full Research Paper
Published 06 Nov 2014

An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals

  • Parul Chawla,
  • Son Singh and
  • Shailesh Narain Sharma

Beilstein J. Nanotechnol. 2014, 5, 1235–1244, doi:10.3762/bjnano.5.137

Graphical Abstract
  • displays similar structure and optical properties to CISe. In order to achieve an efficient hybrid solar cell performance, it is imperative to control the morphology of both organic and inorganic components without any phase separation at macroscopic scale. The implementation of such a control of the
  • heterojunctions. The primary requirement in inorganic/organic hybrid solar cells is to blend a high concentration of inorganic nanoparticles into the polymer matrix to form a percolated network where a phase separation on the macroscopic scale should be avoided. When a photon is absorbed by the donor, i.e., the
PDF
Album
Full Research Paper
Published 08 Aug 2014

Nanoscale particles in technological processes of beneficiation

  • Sergey I. Popel,
  • Vitaly V. Adushkin and
  • Anatoly P. Golub'

Beilstein J. Nanotechnol. 2014, 5, 458–465, doi:10.3762/bjnano.5.53

Graphical Abstract
  • opens up, the pressure decreases, resulting in phase separation of the fluid, which stratifies into an essentially liquid phase and a gas phase existing in the form of gas bubbles. When the fluid goes into the narrowing of the canal cavity, the pressure is reestablished and the bubbles collapse. The
PDF
Album
Full Research Paper
Published 11 Apr 2014

Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives

  • Gisela L. Schulz,
  • Marta Urdanpilleta,
  • Roland Fitzner,
  • Eduard Brier,
  • Elena Mena-Osteritz,
  • Egon Reinold and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2013, 4, 680–689, doi:10.3762/bjnano.4.77

Graphical Abstract
  • image shown in Figure 6a displays a relatively fine phase separation with domain sizes between 10–30 nm and a topography roughness averaged to be 0.4 ± 0.1 nm. Additionally, the film shown in Figure 6b, which was made with CN as solvent additive, displays similar domain sizes (10–30 nm) with a slightly
  •  6c shows large domains of PC71BM up to 100 nm in size (darker regions) and a topography roughness averaged to be 0.4 ± 0.1 nm. Thus, implementation of PC71BM led to large phase separation and consequently limited charge generation resulting in a reduction in short-circuit current densities (6.5 vs
  • 5.7 mA/cm2) and PCEs (3.0 vs 2.5%) in the solar cell device. The non-ideal phase separation of DCV5T-Bu4 and PC71BM spin-coated from ODCB can also be rationalized by using the relative maximum solublities of the donor and acceptor in the casting solvent. The oligothiophene donor displays a maximum
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • which local density fields are employed as collective variables for simulating the structural evolution of phase-separation morphologies [11][48][49][50][51][52][53]. Several different quantum mechanics approaches have been used in attempts to understand electronic structure and proton conduction in
PDF
Album
Full Research Paper
Published 26 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • nanoglass catalyst. This conclusion was suggested by the results of leaching measurements. Multiphase nanoglasses Production of multiphase nanoglasses So far multiphase nanoglasses have been produced by inert-gas condensation (IGC) [6] and by phase separation on a nanometer scale [76][77]. The first
  • that are immiscible in the crystalline state. Multiphase glasses structured on a nanometer scale have been produced by phase separation and have been studied in several alloy systems, e.g., in Ag–Ni [79][80], Cu–Nb [81], Ag–Cu [82][83][84], Ag–Fe [56], Ag–Gd [57], Cu–Ta and Cu–W [58]. The
  • nanostructured glasses produced by phase separation differ from the ones prepared by the IGC method primarily by the structure of the interfaces between adjacent regions of different chemical compositions and by the limitations in selecting the chemical compositions of the regions A and B (Figure 3h). In the
PDF
Album
Review
Published 13 Sep 2013

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier and
  • Pierre-Yves Tessier

Beilstein J. Nanotechnol. 2012, 3, 846–851, doi:10.3762/bjnano.3.95

Graphical Abstract
  • : carbon; ferromagnetic; graphene; nanofabrication; nanowires; nickel; phase separation; Introduction Magnetic nanowires have been widely investigated during the last two decades for fundamental physics [1][2][3][4][5][6][7], and nano-engineering [7][8][9][10]. The various properties of these
  • 11 bands of turbostratic carbon) are probably absent due to the low number of analyzed stacked graphene layers. The other rings observed on the diffraction pattern are attributed to face-centered cubic (fcc) nickel. The formation of the stacked graphene layers results from the phase separation and
PDF
Album
Supp Info
Letter
Published 11 Dec 2012

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters
  • , cheap and fast techniques allowing the parallel fabrication of billions of nanostructures are required. Phase separation of binary polymer blend solutions during a spin-coating process produces nano- and micropatterns on large areas in a fast and scalable fashion. This phase separation has been
  • diodes (OLED) [42][43][44] and more. Polymer phase separation in thin films can be obtained by methods such as spin coating [31] and Langmuir–Schaefer deposition [45]. In the case of the spin-coating technique it is possible to guide the morphogenesis by employing a prepatterned solid template in order
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles

  • Johan Pohl,
  • Christian Stahl and
  • Karsten Albe

Beilstein J. Nanotechnol. 2012, 3, 1–11, doi:10.3762/bjnano.3.1

Graphical Abstract
  • ]. More general thermodynamic treatments of phase separation in nanoparticles were given by Wautelet et al. [22] and Norskov et al. [21]. The latter authors focused especially on phase equilibria of immiscible Ag–Cu nanoparticles by means of Monte Carlo simulations and found that for all studied alloys
  • phase separation becomes impossible below a certain critical size at any temperature [21]. Significantly fewer studies are found on ordering nanoalloys. Recently, a study on the equilibrium ordering properties of Au–Pd bulk and nanoalloys was published by Atanasov and Hou [24]. Ordering Fe–Pt nanoalloys
PDF
Album
Full Research Paper
Published 02 Jan 2012

Formation of SiC nanoparticles in an atmospheric microwave plasma

  • Martin Vennekamp,
  • Ingolf Bauer,
  • Matthias Groh,
  • Evgeni Sperling,
  • Susanne Ueberlein,
  • Maksym Myndyk,
  • Gerrit Mäder and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 665–673, doi:10.3762/bjnano.2.71

Graphical Abstract
  • high mechanical toughness at evaluated temperatures, and the extreme hardness and chemical resistance of SiC, it is often used as welding flux. Phase separation during the welding process is a major technical challenge, and using nanosized particles may help to overcome this problem. So far, no
PDF
Album
Video
Full Research Paper
Published 07 Oct 2011

Inorganic–organic hybrid materials through post-synthesis modification: Impact of the treatment with azides on the mesopore structure

  • Miriam Keppeler,
  • Jürgen Holzbock,
  • Johanna Akbarzadeh,
  • Herwig Peterlik and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2011, 2, 486–498, doi:10.3762/bjnano.2.52

Graphical Abstract
  • a minimal pressure build-up the presence of a macroporous network is indispensable. Such a second level of porosity in mesoporous silica monoliths can be introduced by several synthetic approaches: Dual templating with sacrificial templates, phase separation processes (e.g., based on polymers), or
  • the application of diol/polyol-modified silanes [1][2][3][14][15][16][17][18]. Nakanishi and Lindén relied on polymerization-induced phase separation during sol–gel processing to form monolithic bodies with a hierarchical organisation of the pore structure at the meso- and macroscopic length scale [16
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2011

Recrystallization of tubules from natural lotus (Nelumbo nucifera) wax on a Au(111) surface

  • Sujit Kumar Dora and
  • Klaus Wandelt

Beilstein J. Nanotechnol. 2011, 2, 261–267, doi:10.3762/bjnano.2.30

Graphical Abstract
  • surface. Figure 1b, which was recorded after 36 minutes, shows the initial phase separation and the formation of rodlets from this thin film. The term phase separation here primarily refers to the isolation of wax molecules which form rodlets (which later on are converted to tubules), from those which do
  • not form rodlets. It is important to note here that these tubules grow on top of a non-tubule forming wax film and not on top of the Au(111) substrate itself. The average time for the onset of this phase separation is about 15–20 minutes. It is worth mentioning that the average time period before the
  • onset of this phase separation is reproducible from a number of experiments carried out under similar conditions which was verified in our case by repeating the experiments three times. The term rodlet used here is actually taken from previous studies by Koch et al [8]. Figure 1c, which was taken after
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2011

Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites

  • Jana Bomm,
  • Andreas Büchtemann,
  • Angela Fiore,
  • Liberato Manna,
  • James H. Nelson,
  • Diana Hill and
  • Wilfried G. J. H. M. van Sark

Beilstein J. Nanotechnol. 2010, 1, 94–100, doi:10.3762/bjnano.1.11

Graphical Abstract
  • potential applications in a new generation of light-emitting diodes (LEDs), lasers or luminescent solar concentrators [3][4][5][6]. One of the challenges of these applications is the incorporation of inorganic nanoparticles into organic polymer matrices, since this is usually accompanied by phase separation
PDF
Album
Full Research Paper
Published 29 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • and electronic structure of the sample. Moreover, due to its surface sensitivity, XPS can be used to obtain information on surface oxidation, phase separation and segregation both in films and in particles [66]. In this section some important findings are discussed which have impact on the
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities