Search results

Search for "protein corona" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • , Germany 10.3762/bjnano.5.180 Abstract When particles incorporated within a mammalian organism come into contact with body fluids they will bind to soluble proteins or those within cellular membranes forming what is called a protein corona. This binding process is very complex and highly dynamic due to
  • the plethora of proteins with different affinities and fractions in different body fluids and the large variation of compounds and structures of the particle surface. Interestingly, in the case of nanoparticles (NP) this protein corona is well suited to provide a guiding vehicle of translocation
  • subsequent accumulation in secondary organs and tissues but also the the transport across organ membranes depended on the route of AuNP application. Our in vitro protein binding studies support the notion that the observed differences in in vivo biokinetics are mediated by the NP protein corona and its
PDF
Album
Review
Published 02 Oct 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • , the fate of nanoparticles in biological fluids is not only dictated by electrostatic effects. Nanoparticles are known to spontaneously react with organic medium components, predominantly serum proteins, which rapidly (<0.5 min) form a stable protein corona on the nanoparticles [110], known to
  • stabilize the particles against aggregation by sterical effects [111]. The mechanism of protein corona formation is still under vivid debate, though it is generally believed that proteins with high affinities strongly bind to the nanoparticle surface forming a hard corona, while other proteins more loosely
  • occur on bare nanoparticle surfaces [111]. In order to examine the influence of protein stabilization on ligand-free nanoparticles, albumin may be an appropriate model substance, which is known to be abundant in the protein corona and is one of the most frequent proteins in serum-containing cell culture
PDF
Album
Video
Review
Published 12 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • number of fundamental principles exist, which are outlined in this review. Keywords: colloidal stability; intracellular particle distribution; nanoparticles; protein corona; toxicity of nanoparticles; Introduction There is a multitude of reports about the interaction of colloidal nanoparticles (NPs
  • experimental approach. While after short times of exposure huge differences in the amount of incorporated NPs can exist (e.g., between ligand-modified and plain NPs), those differences typically become less significant after longer exposure times [29], e.g., by the presence of the protein corona [30], as will
  • -called protein corona [93][94], which in fact can increase or reduce colloidal stability [95][96]. Thus, characterization of colloidal stability and other physicochemical properties of NPs needs to be carried out under the same conditions under which later on cells are incubated with the NPs (i.e., in
PDF
Album
Review
Published 09 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • inflammatory markers or changes in metabolite levels should be determined to access the biological response to nanocrystals in vivo. This is even more important as plasma proteins rapidly bind to the surface of nanoparticles to form a protein corona that influences distinct pathophysiological effects such as
PDF
Album
Full Research Paper
Published 02 Sep 2014

The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles

  • Dominic Docter,
  • Christoph Bantz,
  • Dana Westmeier,
  • Hajo J. Galla,
  • Qiangbin Wang,
  • James C. Kirkpatrick,
  • Peter Nielsen,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2014, 5, 1380–1392, doi:10.3762/bjnano.5.151

Graphical Abstract
  • be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses. Here, we employed amorphous silica nanoparticles (ASP
  • ) and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins
  • (ASP100; Ø = 100 nm) showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential
PDF
Album
Full Research Paper
Published 27 Aug 2014

Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact pre-implantation development

  • Ulrike Taylor,
  • Wiebke Garrels,
  • Annette Barchanski,
  • Svea Peterson,
  • Laszlo Sajti,
  • Andrea Lucas-Hahn,
  • Lisa Gamrad,
  • Ulrich Baulain,
  • Sabine Klein,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2014, 5, 677–688, doi:10.3762/bjnano.5.80

Graphical Abstract
  • microscopy; gene expression; protein corona; toxicity; Introduction Gold and particularly silver are among the most commonly used materials for nanoparticle applications. They can be found in an increasing amount of consumer products [1], but they also emerge as materials for medical and biotechnological
  • intriguing. In all published trials where silver nanoparticle exposure to embryos was realized by co-incubation, a considerable toxicity was denoted. The co-incubations described in literature were always performed in serum-free media, thus prohibiting a protein corona to be formed around the particle
  • . Notably, in all trials where silver nanoparticles were injected directly, no toxicity was observed. Inside embryos or chicken egg albumen, proteins are abundant, and a protein corona is probably formed immediately around the injected particles. Such protein coronas have been described and characterized
PDF
Album
Full Research Paper
Published 21 May 2014

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • proteins. Depending on the properties of its surface, a NP may adsorb proteins and other biomolecules from the fluid to a lesser or greater extent. A protein coating layer, the so-called ‘protein corona’, forms and can completely enshroud the NP [6][7][8][9][10][11]. Consequently, at least the initial
  • encounter of a NP with a cell is governed by the properties of the protein corona rather than those of the NP surface [12]. NP–protein interactions are typically weaker than chemical bonds and still comparable to the thermal energy at physiological temperatures. Therefore, the protein corona is not static
  • understand the structural and dynamic properties of the protein corona at the molecular level. Recently, we have used quantitative fluorescence microscopy, especially fluorescence correlation spectroscopy (FCS), to study protein adsorption of human serum albumin (HSA) on polymer-coated FePt NPs with an
PDF
Album
Full Research Paper
Published 12 Jul 2011
Other Beilstein-Institut Open Science Activities