Search results

Search for "reactive oxygen species" in Full Text gives 131 result(s) in Beilstein Journal of Nanotechnology.

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • to generate more reactive oxygen species (ROS) and to induce oxidative stress could be a reason for their antibacterial activity against R. solanacearum in tobacco plants [23]. Aside from MgO NPs, other nanomaterials, including titanium dioxide (TiO2 NPs), zinc oxide (ZnO NPs), copper oxide (CuO NPs
  • concentrations of Ag NPs [122]. Reactive oxygen species (ROS), which are involved in cell signaling and homeostasis [123], are considered a characteristic side-effect of oxygen metabolism. High levels of ROS in living organisms induce oxidative stress, which results in damage to the DNA, proteins, and lipids
PDF
Album
Review
Published 12 Feb 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • ][132]. When the size of titanium dioxide is reduced to the nanoscale (TiO2 NPs), its photocatalytic property is greatly improved, generating more reactive oxygen species (ROS). ROS damages bacterial cells, DNA chains, and other cellular structures through oxidative stress. Therefore, the use of TiO2
  • different structures from different microorganisms. Reactive oxygen species are a group of molecules (or reactive intermediates) that even though they exist in nature for a short period of time (half-life varying between 10−9 and 10−3 s) they have a great oxidative potential that can eventually be toxic to
  • mechanisms of these nanoparticles and the development of new substances with high antimicrobial activity. Future Perspectives The generation of reactive oxygen species is the main mechanism by which nanoparticles can trigger antimicrobial activity, the degree of which can vary depending on their material
PDF
Album
Review
Published 25 Sep 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • chemistry involved in their preparation as well as their properties and stability are well studied. In addition to temperature-induced effects, photothermal ablation may induce other phenomena such as the generation of reactive oxygen species [46], which can increase the antibacterial action. One pioneering
  • the hybrid nature of these nanomaterials, the photothermal action can be synergistically coupled with an antibacterial ion release, antibiotic release or with photocatalytic reactions, leading to the generation of reactive oxygen species (i.e., photodynamic action). In this review we have briefly
PDF
Album
Review
Published 31 Jul 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • , silver (Ag), zinc oxide (ZnO), copper oxide (CuO), iron oxide (Fe3O4) and titanium oxide (TiO2) are well recognized options due to their outstanding antibacterial properties. These nanoparticles have antibacterial activity due to the production of reactive oxygen species (ROS) [9][10][11]; more
  • , which also leads to the generation of reactive oxygen species (ROS) [25]. Hence, the above results showed that the antibacterial activity of the TiO2 is improved by the addition of Ag. The antibacterial results clearly demonstrated that the inhibition zone areas against both E. coli and S. aureus depend
PDF
Album
Full Research Paper
Published 29 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • reactive oxygen species, ROS, which can potentiate direct damage to DNA and proteins, and induce lipid peroxidation) [24][56]. It was also shown that histidine–proline-rich glycoproteins with high molecular weight, e.g., kininogen and plasma prekallikrein, from blood serum attach strongly to the surface of
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • -Ce6) for the photodynamic treatment (PDT) of Candida albicans. We show that the FLG-Ce6 hybrid nanomaterial displays enhanced reactive oxygen species (ROS) generation compared with Ce6. The enhancement is up to 5-fold when irradiated for 15 min at 632 nm with a red light-emitting diode (LED). The
  • Paramecia [5]. PDT consists of the interaction of visible-light photons with a photosensitizer located inside the cell or in close proximity to it. In this interaction, the photosensitizer produces highly reactive oxygen species (ROS) by reacting in the excited state with molecular oxygen present in the
  • Ce6 through the donation of electrons that delay its photobleaching. In this way the production of reactive oxygen species is optimized and a better effect against C. albicans is achieved with a low concentration of photosensitizer and a short exposure time to the red LED light source. Results and
PDF
Album
Full Research Paper
Published 17 Jul 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • of protamine also lowered the minimum inhibitory concentration by two orders of magnitude. This is attributed to the enhanced catalytic activity upon binding with protamine, which resulted in altered oxidative stress and a higher generation of reactive oxygen species (ROS). Kurdekar et al. developed
  •  6D–F). Interestingly, the NC frameworks led to a higher cell viability compared to [Au25(SG)18]. This is attributed to the fact that smaller nanoparticles produce reactive oxygen species and possibly aggregate in the cellular medium. The superstructures were also found to show excellent
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • recognizing intracellular toll-like receptors [45][58][59], or the expression of cytokines and chemokines, which activate infiltrated neutrophils in the tumor producing reactive oxygen species (ROS) [60]. The virus could also modulate and recruit CD8 + T cells, and natural killer cells to generate a cytotoxic
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • nanorods into the bacterial cell wall to interact with the cellular biomolecules that increases the osmotic potential and its associated irreversible damage and (ii) the generation of free reactive oxygen species (ROS) radicals that are induced by nanorods that interact with the bacterial membrane and
PDF
Album
Full Research Paper
Published 04 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years
  • emerging strategy is to design nanocarriers able to transport reactive oxygen species in an inert form that can be activated once the vector reaches the tumors. Endoperoxides can be selected as a chemical source of singlet oxygen produced via thermal cycloreversion in an oxygen-independent manner [36][106
  • oxygen species (ROS) and the subsequent killing of the surrounding biological tissue. Photosensitizers are chosen to absorb efficiently in the 600–800 nm range in the so-called phototherapeutic window, where biological components have minimal absortion [16]. Photosensitizers are either small molecules
PDF
Album
Review
Published 15 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
PDF
Album
Review
Published 09 Jan 2020

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • , reactive oxygen species (ROS) production, apoptosis induction and DNA damage in murine fibroblast cells (L929), while ecotoxicity was tested using the aquatic model organism Daphnia magna. The toxicity of these nanoparticles was considerably lower compared to their ionic metal forms (i.e., Ag+ and Au3
  • [26][27][28][29][30][31][32]. Most likely, a mechanism of their toxicity is the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that trigger necrosis or apoptosis [33]. So far, a general consensus regarding NP toxicity is that their toxic effects cannot be conclusively
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • oxidative stress [7]. The release of reactive oxygen species from tobacco smoke provokes a series of systemic immunomodulatory effects that leads to a compromised inflammatory response. These destructive mechanisms also affect collagen synthesis and the skin cellular reparative effects [8][9]. It has been
  • test methods suitable for assessing product efficacy and safety [15]. Vitamin E is a potent antioxidant, able to counteract the reactive oxygen species production during fat oxidation and free radical propagation – indeed it can protect the cell membranes from free radical attack, acting against lipid
PDF
Album
Full Research Paper
Published 29 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • reactive oxygen species (ROS) generation and disruption of bacteria cell walls in the case of E. coli, and release and reactions of ions with thiol groups belonging to proteins of the bacterial membrane of S. aureus [48][49]. Probably, CSTiO2 presented better affinity and greater contact area with Gram
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • ., rutin, hesperidin), which are presently en vogue in cosmetics for antipollution products (e.g., the “molecular barrier” against reactive oxygen species (ROS), infrared (IR) radiation and blue light from computers) [1][2]. For the delivery of such molecules, efficient delivery systems are the only
PDF
Album
Full Research Paper
Published 08 Aug 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • [1][2][3][4][5][6][7]. The catalytic activity can be enhanced by the presence of defects, such as oxygen vacancies (Ov), Ti interstitials (Tiint) [8], and crystal steps. TiO2 is an n-type semiconductor because of these defects. In addition, reactive oxygen species, such as OH and H2O2 (compounds with
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • Reactive oxygen species (ROS) play a critical role in maintaining homeostasis in living organisms because they participate in cell-signaling pathways that control programmed cell death, gene expression, and mechanisms of immune defense [1][2]. Excessive ROS are undesirable because they lead to oxidative
  • oxygen species (ROS) levels to 35–56%, which was associated with a 6–8-times higher cellular uptake in L-929 cells and a 21–31-times higher cellular uptake in LN-229 cells. In contrast, γ-Fe2O3@Hep particles induced a 3.8-times and 14.9-times higher cellular uptake without inducing antioxidant activity
  • -diphenyl-1-picrylhydrazyl (DPPH) assay. Cellular uptake and intracellular antioxidant activity of the particles were evaluated by an iron assay and flow cytometry, respectively, using L-929 and LN-229 cells. Compared to the control, the phenolic modification significantly reduced intracellular reactive
PDF
Album
Full Research Paper
Published 20 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • kidney cells. Si-NPs induced time- and concentration-dependent neuronal cell death by production of reactive oxygen species and reduction of glutathione levels [12]. Similarly, Si-NPs led to morphological changes, concentration-dependent membrane damage, decreased cell viability, increased apoptosis
PDF
Album
Full Research Paper
Published 25 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • delivery in clinical use remains unclear. Reactive oxygen species (ROS) have the potential to cause tissue destruction [35] and play an important role in the pathology of certain human diseases including atherosclerosis [36], rheumatoid arthritis [37], cancer [38], and neurodegenerative diseases [39
PDF
Album
Full Research Paper
Published 18 Apr 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • free-radical scavengers in biomedical applications as a potent therapeutic option for the treatment of disorders generated by reactive oxygen species, such as neurodegenerative disorders, retinal disorders and cancer [43][44][45]. In this work, we report the process of armoring anionically
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • after unintended exposure [10][11][12][13][14]. Noble metal nanoparticles such as Au, Pt, Pd, and Rh have distinct catalytic properties in biology, and have been reported to show several enzyme-like activities in vitro, including reactive oxygen species scavenger activity [15][16][17][18][19][20][21][22
PDF
Album
Full Research Paper
Published 29 Oct 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • detection by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Reactive oxygen species (ROS) generation by cells was also investigated during hyperthermia in vitro experiments. In this case, unfixed cells (exposed to AMF and control cells) were washed twice with HBSS supplemented with 2 mM L-glutamine
  • -44 and MNP-25 samples (Figure S2), T2-weighted MRI-images of the NP solutions in water and 2% agarose (Figure S3), hydrodynamic size of NPs in water (Table S1), a cell viability study by MTS assay (Table S2), apoptosis/necrosis activation (Figures S4 and S6) as well as reactive oxygen species
  • tested by several methods. Standard MTS assay (Figure 7, Table S2, Supporting Information File 1) was conducted to investigate the NP cytotoxicity. These results are supplemented with apoptosis/necrosis activation (Figures S4 and S6, Supporting Information File 1) and production of reactive oxygen
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • observed in FE-SEM micrographs. The up-regulated proapoptotic and down-regulated antiapoptotic gene expressions were further confirmed with semiquantitative reverse transcriptase polymerase chain reaction (PCR). The increased intracellular reactive oxygen species (ROS) were quantified via flow cytometry
  • cell death involves the generation of intracellular reactive oxygen species (ROS) molecules (e.g., O2−, OH·, H2O2) [44]. The elevated level of ROS species interferes with the normal metabolism of the cells by disrupting cell structures such as lipids, proteins and DNA [45]. This increased oxidative
  • . In its reduced state, CellROX deep red has no or little fluorescence. Upon oxidation by reactive oxygen species, the increased bright red fluorescence emission of CellROX deep red dye can be easily quantified by fluorescence via flow cytometry [46]. The finding was quite interesting whereby 5.1% of
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed. Keywords: nanomaterial classification; nanomaterial history; nanotoxicity; oxidative stress; reactive oxygen species; regulations; Review Introduction
  • containing metals have the capability of damaging lung tissues by producing reactive oxygen species [43]. A case study shows that the quality of air in Asia and North America is heavily disturbed during every spring season due to dust storms occurring in the Gobi desert [52][53]. More recently, Shi et al
PDF
Album
Review
Published 03 Apr 2018
Other Beilstein-Institut Open Science Activities