Search results

Search for "semiconductor" in Full Text gives 618 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • measurements based on scanning probe microscopy (SPM) allow for the analysis of two-dimensional (2D) features at the surface and along a physical cross section of nanoscale semiconductor structures. Among the wide variety of SPM techniques available [3], Kelvin probe force microscopy (KPFM) is an application
  • not repeated here for brevity. The solution presented in this work assumes ohmic contacts and, therefore, Dirichlet boundary conditions fixing potential and carrier concentrations at the boundaries, as reported in section 3.5 of the SILVACO ATLAS manual. The ATLAS module solves semiconductor transport
  • and continuity equations numerically in two dimensions and includes flexible descriptions of bulk and surface defect distributions. KELSCAN simulates the experimental setup by sequentially moving the AFM tip across the surface of the sample, statically solving the semiconductor equations at each
PDF
Album
Full Research Paper
Published 14 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • semiconductor materials for sustainable applications; for instance, dye solar cells, solar-driven water splitting, NOx removal, and contaminant degradation. The synthesis of semiconductor nanomaterials published on this thematic issue indicates a wide range of synthetic routes. The as-prepared nanomaterials
PDF
Album
Editorial
Published 13 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • chemisorption and physisorption at the nanowire interface, which suppress electronic transport inside the p-type semiconductor nanowire but enhance ionic transport in the water layers adsorbed on the nanowire surface. Possible physicochemical processes at the nanowire surface are discussed in line with
  • ; electrochemical impedance spectroscopy; humidity; nanowire; sensor; Introduction Semiconductor metal oxide nanomaterials have demonstrated a great potential for integration in a variety of devices, such as gas and humidity sensors, nanoelectronics, and low-power thermoelectrical generators [1][2][3][4][5][6
  • ]. Copper oxide (CuO) nanowires are excellent candidates for applications in such devices owing to the inexpensive, simple and scalable bottom-up synthesis, and robust physical properties [7][8][9]. A high specific surface area of nanowires and a p-type semiconductor structure are suggested for highly
PDF
Album
Full Research Paper
Published 05 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • authors pointed out that metal clusters (for example, isoreticular MOFs) essentially define the overall electronic properties of MOFs and provide MOFs with the characteristics of a wide-bandgap semiconductor like ZnO. The size of the organic linker and the hybridization of the central atom of the linker
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • gas production has been detected for the samples from series “b”, whereas the CO2 evolution was observed for all samples from series “a”. Keywords: ethanol; H2 production; laser pyrolysis; photocatalyst; TiO2 nanoparticles; Introduction Semiconductor materials are widely used, from electronic
  • components to substances that catalyze decomposition processes. They have a bandgap that varies from one material to another. Titanium dioxide is a semiconductor material and has been investigated, at first, for solar cells [1][2][3][4] and as optoelectronic component [5][6][7]. In recent years, it has been
PDF
Album
Full Research Paper
Published 22 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • Fourier model. Keywords: ballistic transport; kinked nanowire; molecular dynamics; phonon Monte Carlo; thermal transport; Introduction The thermal conductivity of semiconductor nanostructures is of great interest because of potential applications in a wide variety of fields, such as thermal control
PDF
Album
Full Research Paper
Published 15 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • absorption spectra of the GaN platform and the GaN/Ag SERS substrates fabricated using MS and PLD at different temperatures are shown in Figure 5. The spectrum of GaN shows the typical spectral shape of a broadband semiconductor with an absorption edge around 365 nm (3.4 eV). The spectra of all GaN/Ag
PDF
Album
Full Research Paper
Published 03 May 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • semiconductor materials, optical absorption significantly varies with the wavelength, depending on the bandgap energy. When semiconductor materials are irradiated with light, electron–hole pairs with energies close to the bandgap are produced. The excited electrons eventually return to a lower energy state and
PDF
Album
Review
Published 04 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • semiconductor metal oxide nanoparticles exhibit the spill-over effect, which alters the plasmonic absorption and spectral width of the plasmonic nanoparticles integrated in dielectric matrices. This spill-over effect, however, decreases with a decrease in electron density. For nanoparticles with low electron
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • inactivate pathogens. The term “photocatalysis” refers to chemical reactions that use light and a photocatalyst (basically a semiconductor). A few of the requirements that an effective photocatalyst system should satisfy include high sunlight absorption, an appropriate gap (1.5–2.8 eV), long-term charge
  • semiconductor as well as the redox levels of the substrate [11][21]. One of the main barriers preventing photocatalysis from being used in practical applications is the lack of suitable semiconductor photocatalysts. The commonly used nanometre-sized photocatalysts are metal oxides or sulfides (binary compounds
  • : TiO2, CuO, CdS, MoO3; ternary compounds: Bi2Mo3O12, ZnFe2O4; quaternary compounds: Ni0.5Zn0.5Fe2O4, Bi4NbxTa1−xO8I) [19][20][21][22][23][24][25][26]. Because of its distinct features, TiO2 is the most extensively investigated photocatalytic semiconductor. However, it barely absorbs 4–5% of the
PDF
Album
Review
Published 03 Mar 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • of the effects of semiconductor interface states with high spatial resolution using high and low AC bias frequencies compared with the cutoff frequency of the carrier transfer between the interface and bulk states. Information on the energy spectrum of the interface state density is important for
  • actual semiconductor device evaluation, and there is a need to develop a method for obtaining such physical quantities. Here, we propose high–low Kelvin probe force spectroscopy (high–low KPFS), an electrostatic force spectroscopy method using high- and low-frequency AC bias voltages to measure the
  • interface state density inside semiconductors. We derive an analytical expression for the electrostatic forces between a tip and a semiconductor sample in the accumulation, depletion, and inversion regions, taking into account the charge transfer between the bulk and interface states in semiconductors. We
PDF
Album
Full Research Paper
Published 31 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • , during the last four decades, the triumphal development of microelectronics and computers, based on traditional semiconductor chips, was enabled by the exponential growth of the number of transistors in chips and the shrinkage of the size of individual transistors, following the empirical Moore’s Law
  • -workers (see [4][5] and references therein) has been investigated by many researchers [6][7][8]. The energy consumption of the SDT basic element is of the order of 10−19 J, corresponding to up to seven orders of magnitude less energy dissipation than that for their semiconductor analog, even when the
PDF
Editorial
Published 10 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • -off lithography; gap; self-assembled monolayer; sub-micrometer; surface patterning; Introduction The development of lithographic techniques is crucial to the advancement of the electronics and semiconductor industry, the backbones of modern technology. Advances in photolithography have pushed the
  • fabricated with inexpensive photomasks. With this technology, we foresee that the straightforward generation of versatile nanoscale patterns can further push the boundaries of CLL, and expand its applications in solving conventional biosensing, nanoelectronics, and semiconductor problems. Visualization of
PDF
Album
Full Research Paper
Published 04 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • Abdelbaki Hacini Ahmad Hadi Ali Nurul Nadia Adnan Nafarizal Nayan Laser and Semiconductor Technology Research Group, COR PDSR, Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Pagoh Educational Hub, Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Johor, Malaysia
  • resistivity follows for higher annealing energies. The resistivity variation can be explained by the behavior of the metal–semiconductor contact and the effect of laser annealing on the structural defects of the surface. The inclusion of a thin metal film with low resistivity and the reduction of grain
  • -annealed ITO/Mo bilayer thin films. Acknowledgements The authors would like to thank Laser and Semiconductor Technology Research Group, and Microelectronics and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC) for providing technical facilities for our work. Furthermore, the authors would like to
PDF
Album
Full Research Paper
Published 28 Dec 2022

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • of one-dimensional quantum wells, our analysis shows that this state does not act as a free electron gas and that the features are instead localized above individual PTCDA molecules. Keywords: AFM; copper phthalocyanine; dI/dV; PTCDA; STM; Introduction Organic semiconductor devices typically
  • include a metal–organic interface. At this interface, it is important to be able to modify the band structure to optimize the efficiency of a device [1]. One of the most successful methods to change the electronic structure of a molecular semiconductor device is to add a second molecular species either at
  • low concentration as a dopant or at higher concentrations as a mixed layer [2]. Perylenetetracarboxylic dianhydride (PTCDA) is an organic molecule that has been investigated for its properties as an organic semiconductor and as a dye. It is straightforward to evaporate in vacuum and, at submonolayer
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • ability. (i) TNAs only respond to ultraviolet (UV) light [22][23][24], and (ii) they exhibit fast carrier recombination [25]. Recently, the development of new heterojunction architectures through coupling TNAs with other semiconductor materials, especially low-bandgap semiconductors, led to a reduction of
  • the required amounts of noble metals and materials such as CdS or ZnS [26][27][28][29]. There are many low-bandgap semiconductors that were coupled with TNAs, including MoS2, WS2, MoSe2, g-C3N4, Cu2O, and CuO. MoS2 is a semiconductor with a narrow bandgap (1.9 eV at room temperature) exhibiting unique
  • spectroscopy (DRS) was carried out to measure the optical bandgap of the semiconductor materials through the Tauc method using the absorption coefficient α of the material, according to Equation 1 [42]: where h, ν, Eg, and B are the Planck constant, the frequency of the photon, the bandgap energy, and a
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • magnetite and maghemite are significantly different. Magnetite is a conductor (bandgap of 0.1 eV), while maghemite is a semiconductor (bandgap of approx. 2.0 eV) [12]. The unit cell parameter of magnetite is slightly larger (ca. 8.40 Å) than that of maghemite (ca. 8.34 Å). A combination of these properties
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • reactions. As a wide-bandgap (ca. 3.2 eV) semiconductor, TiO2 is a promising photocatalyst for degrading a massive range of high-molecular-weight organic pollutants under UV radiation [1]. Because of high specific surface, nanoscale TiO2 as grains or tubes can absorb UV light more substantially than
PDF
Album
Full Research Paper
Published 14 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • complementary metal oxide semiconductor (CMOS) processes [13][14]. It has been shown that the HCG system can support the optical bound states in the continuum (BICs) [15][16][17][18]. BIC plays an important role in determining the characteristics of the radiative high-Q resonance [17]. However, there are fewer
PDF
Album
Full Research Paper
Published 25 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • nature of the electronic transition within the semiconductor. The HBN exhibited an absorption edge at about 220 nm corresponding to a bandgap (Eg) of 5.2 eV, whereas the bandgap of MBN materials was found to be 3.68, 3.41, and 2 eV for MBN-25, MNB-50, and MBN-80, respectively. The material capability to
  • MBN-80 thus demonstrates the enhanced electrochemical performance and lower charge transfer resistance. This mainly means an enhanced electron transfer from MBN-80 for a favourable visible light photocatalysis. Additionally, the capacitance of the electrical double layer generated at the semiconductor
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities
  • catalyze chemical processes and transform constantly recoverable solar energy into productive chemical energy [1]. Various semiconductor nanoparticles have been used as effective photocatalysts in essential photocatalytic applications such as wastewater treatment, water dissociation, and energy conversion
  • electric field (IEF) between the layers. This electric field allows photogenerated charge carriers to be separated and moved effectively [17][18][19][20][21]. A range of visible-light-active Bi-based photocatalysts has lately raised curiosity among semiconductor photocatalysts. Bi3+ has a higher stability
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • Earth’s crust and a well-known p-type and narrow-bandgap (≈0.35 eV at room temperature) semiconductor material. Tellurium is widely used in thermoelectric devices, piezoelectric devices, photoconductive devices, gas sensing, nonlinear optical devices, solar cells, photonic crystals, holographic recording
  • ][27]. This model has been successfully used to analyze the electronic properties of single semiconductor NWs of different cross sections and materials such as ZnO [27], SnO2 [16][19], and GaAs [17][18][28]. In this case, the calculations were done using μh = gmL2/(VdsCox) and p = 1/(eρμh), where gm
  • metallic-like character of some bulk crystals [34][40][41][42][43] and NWs [44] at high temperatures, revealed by a decrease in the electrical resistance as the temperature drops. This behavior is not observed in our material, which exhibits semiconductor behavior over the whole investigated temperature
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • future, such probes will enable previously unexplored conductivity measurements, such as measurements of semiconductor nanostructures or electrical conductivity on insulating substrates. Conductive atomic force microscopy (C-AFM) can be used to characterize the electrical properties of semi-conductive
PDF
Album
Review
Published 03 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • pollutants with light under ambient conditions [10]. Due to its unique properties, such as high chemical stability and low synthesis cost, graphitic carbon nitride has attracted considerable attention in the realm of environmental remediation [11][12][13]. It is an organic semiconductor that effectively
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • nanomaterials has proved to be useful for applications in a variety of disciplines, including chemical or biological sensing, bioimaging, drug delivery, photodynamic therapy, electrocatalysis, and photocatalysis, with advantages over commonly used semiconductor dots or conventional fluorescent probes such as
PDF
Album
Review
Published 05 Oct 2022
Other Beilstein-Institut Open Science Activities