Search results

Search for "sensing applications" in Full Text gives 83 result(s) in Beilstein Journal of Nanotechnology.

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • mobility and low electrical noise, are all precisely concentrated in this material. As it has been reported by Varghese et al. in a recent review on chemical sensors, the interest of the scientific community towards graphene for sensing applications is continuously growing, as testified by the increasing
PDF
Album
Full Research Paper
Published 08 May 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • frequency. By changing the frequency, one can excite different nanometer-sized hot spots on a film. This effect has high potential for various applications in SERS, plasmon-enhanced photocatalysis and sensing applications [6][7][8][9][10][11][12][13][14][15]. In addition, polarization plays a fundamental
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

  • Sylwia Sekula-Neuner,
  • Monica de Freitas,
  • Lea-Marie Tröster,
  • Tobias Jochum,
  • Pavel A. Levkin,
  • Michael Hirtz and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2017, 8, 715–722, doi:10.3762/bjnano.8.75

Graphical Abstract
  • portfolio of HEMA polymer applications emphasizes the use of this solid substrate as a very attractive platform for a variety of biomedical applications. The combination of microfluidic settings and phospholipid arrays on solid supports like HEMA polymer may also prove fruitful for a multitude of sensing
  • applications. Experimental Substrate preparation Fabrication of alkyne HEMA-EDMA polymer film was described in our previous work [9][10]. Briefly, a 12.5 µm thin, hydrophilic porous polymer film was firstly prepared on a glass substrate by using photoinitiated copolymerization of 2-hydroxyethyl methacrylate and
PDF
Album
Full Research Paper
Published 27 Mar 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • MWCNTs, for gas sensing applications. Experimental Preparation of metal-decorated MWCNT-based chemiresistors MWCNT networked films were grown by chemical vapor deposition (CVD) directly onto the surface of an alumina substrate that was previously coated with a cobalt (Co) sputtered catalytic layer (≈6 nm
PDF
Album
Full Research Paper
Published 10 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • single molecule resolution, has been demonstrated with graphene-based devices under laboratory conditions [1][2][3]. However, in order to develop gas sensing applications working under real conditions, much effort has been dedicated to modification of graphene for improving its gas sensing
  • gases, such as ammonia. Vanadium oxide based films and nanostructured layers have been previously synthesised for gas sensing applications by various methods [11], including pulsed laser deposition (PLD) [12]. PLD is a highly versatile method for relatively well-controlled preparation of thin films, and
PDF
Album
Full Research Paper
Published 07 Mar 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • strategy to fabricate arrays of back-gated Gr-FETs on poly(ethylene naphthalate) (PEN) substrates. These devices present a large-area graphene channel fully exposed to the external environment, in order to be suitable for sensing applications, and the channel conductivity is efficiently modulated by a
  • gate capacitance can reach hundreds or even thousands of nF/cm2, which is still reasonably high for sensing applications. It is clear that the high quality and the scaled thickness of the dielectric film fabricated below the temperature limit of the plastic support is the key point for the final
  • lengths on the order of ≈100 µm, suitable for solution sensing applications. This channel size poses a challenge considering that the larger the channel dimension, the higher the effect can be on the device performance due to the material defects (e.g., graphene cracks and grain boundaries, surface
PDF
Album
Full Research Paper
Published 20 Feb 2017

Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies

  • Xuefeng Wang,
  • Zhong Mei,
  • Yanyan Wang and
  • Liang Tang

Beilstein J. Nanotechnol. 2017, 8, 372–380, doi:10.3762/bjnano.8.39

Graphical Abstract
  • GNR biofunctionalization and can be easily extended to other sensing applications based on other gold nanostructures or new biomolecules. Keywords: biofunctionalization; biosensing; four methods; gold nanorod; introduction of sulfhydryl groups; Introduction Gold nanorods (GNRs) are widely used in
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2017

Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

  • Wojciech Szmyt,
  • Carlos Guerra and
  • Ivo Utke

Beilstein J. Nanotechnol. 2017, 8, 64–73, doi:10.3762/bjnano.8.7

Graphical Abstract
  • ALD [14]. Arrays of nanocylinders are also used in gas sensing systems [15][16]. The increasing interest in surface functionalisation via gas phase techniques as well as gas sensing applications with high-aspect-ratio nanocylinder arrays has raised the need for the fundamental understanding and
PDF
Album
Full Research Paper
Published 09 Jan 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • spectroscopy; strain sensor; Introduction Many materials have been proposed for strain sensing applications including metals, silicon, carbon nanotubes and graphene. The unique thermal, mechanical and electrical properties of graphene [1] have inspired new and appealing applications in different fields. Its
PDF
Album
Full Research Paper
Published 03 Jan 2017

Surface-enhanced infrared absorption studies towards a new optical biosensor

  • Lothar Leidner,
  • Julia Stäb,
  • Jennifer T. Adam and
  • Günter Gauglitz

Beilstein J. Nanotechnol. 2016, 7, 1736–1742, doi:10.3762/bjnano.7.166

Graphical Abstract
  • spectrum could also benefit from migration to the mid-infrared spectrum. In a feature article Sieger and Mizaikoff [22], the potential for chemical and biological label-free sensing applications is emphasized. A toolbox containing tunable quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) as
PDF
Album
Full Research Paper
Published 16 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • arrays, has been designed and applied to bioanalytical sensing applications [17][18][19][20]. Nanohole arrays, which are characterized by combining localized and propagating surface plasmons, offer a possibility to tune the plasmonic features and therefore optimize the sensing performance for a specific
  • changes the optical properties [46]. Yet, much is still unknown and further understanding of the potential in sensing applications of substrates with both surface plasmon modes can be achieved by comparison of their analytical properties. Thus different diameter-to-periodicity ratios (D/P) for a specific
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

  • Chamanei Perera,
  • Kristy Vernon,
  • Elliot Cheng,
  • Juna Sathian,
  • Esa Jaatinen and
  • Timothy Davis

Beilstein J. Nanotechnol. 2016, 7, 751–757, doi:10.3762/bjnano.7.66

Graphical Abstract
  • highly sensitive to the surrounding dielectric environment. This unique property is incredibly useful in sensing applications. Mach–Zehnder (MZ) interferometry [1][2][3][4][5], surface enhanced Raman spectroscopy (SERS) [6][7][8][9], ring resonators [10] and surface plasmon resonance (SPR) [11][12][13
  • excitation. The plasmonic Mach–Zehnder interferometer (MZI) is one such alternative passive nano-optical device used in refractive index sensing applications [3][5][15][16]. In physics, a MZI is a device used to determine the relative phase shift variations between two collimated beams derived from splitting
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2016

Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

  • Chang-Wan Kim,
  • Mai Duc Dai and
  • Kilho Eom

Beilstein J. Nanotechnol. 2016, 7, 685–696, doi:10.3762/bjnano.7.61

Graphical Abstract
  • graphene resonators for their mass sensing applications. Keywords: edge stress; graphene resonator; mass sensing; nonlinear vibration; size effect; sensitivity; Introduction Recent advances in nanotechnology have allowed for the development of nano-electro-mechanical system (NEMS) devices that can
PDF
Album
Full Research Paper
Published 09 May 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • protein has not been explored yet for gas sensing applications to the best of our knowledge. This work explores the possibility of overcoming the intrinsic limitations of ZnO, in particular the high operating temperature, by creating a ZnO/bR hybrid structure that exploits the charge transfer mechanism of
PDF
Album
Full Research Paper
Published 04 Apr 2016

In situ SU-8 silver nanocomposites

  • Søren V. Fischer,
  • Basil Uthuppu and
  • Mogens H. Jakobsen

Beilstein J. Nanotechnol. 2015, 6, 1661–1665, doi:10.3762/bjnano.6.168

Graphical Abstract
  • making high-aspect-ratio structures [8]. SU-8 is good for optical sensors being highly transparent in the visible region [9] and also useful in biological sensing applications being quite biocompatible [10]. SU-8 is also well suited for direct laser writing and 3D structuring [11] although only 2D
PDF
Album
Letter
Published 30 Jul 2015

DNA–melamine hybrid molecules: from self-assembly to nanostructures

  • Rina Kumari,
  • Shib Shankar Banerjee,
  • Anil K. Bhowmick and
  • Prolay Das

Beilstein J. Nanotechnol. 2015, 6, 1432–1438, doi:10.3762/bjnano.6.148

Graphical Abstract
  • an attractive molecular scaffold for the precise positioning of different molecules on the nanoscale [3][4]. DNA has been used to create nanostructures through hybridization-mediated self-assembly for molecular electronics and sensing applications [5][6][7]. DNA–organic hybrid structures have
PDF
Album
Supp Info
Letter
Published 30 Jun 2015

Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

  • Hamdi Baccar,
  • Atef Thamri,
  • Pierrick Clément,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2015, 6, 919–927, doi:10.3762/bjnano.6.95

Graphical Abstract
  • that they can now be produced at relatively low cost [10][11][12][13][14] with a wide range of structures that can be used for different sensing applications [15][16][17]. Moreover, carbon nanotubes can operate at room temperature (in contrast to metal oxides that must be operated at relatively high
PDF
Album
Full Research Paper
Published 09 Apr 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • unique photoluminiscent properties, Ru(bpy) complexes were reported to be successfully used for different chemo-sensing applications. Runowski et al. [26] reported a new class of multifunctional fluorescent and magnetic-core-based nanocomposites synthesized through facile co-precipitation and
PDF
Album
Review
Published 24 Feb 2015

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • plasmonic nanostructure for sensing applications were investigated. Results and Discussion Silica coating control In order to investigate the effect of the silica layer coating on the optical response of the plasmonic structure, the first step is to understand the role that the main parameters play on the
  • broadening the potential of the plasmonic-based sensing applications. Indeed, such a sol–gel layer represents a proper framework to protect the plasmonic surface against external agents and reduces the sensor chip regeneration time. In addition, it represents a suitable platform to selectively bind target
PDF
Album
Full Research Paper
Published 19 Feb 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • osteoblasts cell proliferation and viability [89]. Sensing applications One interesting application area of BNNTs is the field of sensors. Although there are not many reports regarding their use in sensors, a few available reports are included here as examples. The unique properties of the BNNTs can be
PDF
Album
Review
Published 08 Jan 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • for enhancement of plasmonic sensing systems [2][4][21]. Nanocap-hole arrays are extremely simple coupled structures to produce based on colloidal lithography with the potential for use in sensing applications. They have recently been applied for SERS enhancement [22]. Here we focus on investigating
  • in Figure 1c. SRO hole arrays fabricated by this approach have been studied in terms of their optical response and been used in sensing applications extensively in recent years [29][30][31][32][33][34]. The arrays of structures of the different sample types studied here are made from the same
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

  • Fabio Lupo,
  • Cristina Tudisco,
  • Federico Bertani,
  • Enrico Dalcanale and
  • Guglielmo G. Condorelli

Beilstein J. Nanotechnol. 2014, 5, 2222–2229, doi:10.3762/bjnano.5.231

Graphical Abstract
  • for their potential catalytic [5] and sensing applications [4]. Various metallophthalocyanines (Zn, Fe, Co, Cu, Sn) have been deposited as monolayers and multilayers on various surfaces [13][18] and, in some cases, free base Pc have been metalated directly on the metal surface from vapor-deposited
PDF
Album
Full Research Paper
Published 25 Nov 2014

Advances in NO2 sensing with individual single-walled carbon nanotube transistors

  • Kiran Chikkadi,
  • Matthias Muoth,
  • Cosmin Roman,
  • Miroslav Haluska and
  • Christofer Hierold

Beilstein J. Nanotechnol. 2014, 5, 2179–2191, doi:10.3762/bjnano.5.227

Graphical Abstract
  • summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel
PDF
Album
Review
Published 20 Nov 2014

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • opportunities with regard to sensing applications. In this family, MIL-47(V) has a somewhat special status, because, unlike most breathing MOFs MIL-47(VIV) does not show breathing under thermal stimuli or after the adsorption of gases or liquids [5][44][50], but only under significant mechanical pressure [45
  • -narrow-pore phase transition is derived and found to be in perfect agreement with experiments. The presence of 1D magnetic and electronic properties and the mechanic properties of the MIL-47(V) may provide interesting opportunities for sensing applications. (a) Ball-and-stick representation of the MIL-47
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • the oxygen defects that act as low energy adsorption sites. To further enhance its gas sensing properties, reduced GO can be doped with alkali metals [18], similarly to what has been done in other carbon materials, to tune up the electronic properties for sensing applications [44]. Different research
  • studied for the first time an NO2 sensor based on caesium-doped graphene oxide (GO-Cs). We demonstrated that caesium doping is an effective technique to reduce the GO, making it a promising material for gas sensing applications. XPS, Raman and KPFM results confirm the successful incorporation of Cs into
  • groups can be easily controlled [28][34][35][36][37][38] making this process a good candidate for graphene functionalization. The oxygen groups of the resulting GO lead to the disruption of the graphitic structure, thus making the material electrically too much insulating for resistive gas sensing
PDF
Album
Full Research Paper
Published 17 Jul 2014
Other Beilstein-Institut Open Science Activities