Search results

Search for "vibration" in Full Text gives 323 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • stretching. The very strong band at 1640 cm−1 corresponds to a conjugated C=O stretching vibration. The characteristic bands at 1600, 1523, and 1447 cm−1 were assigned to both aromatic and olefinic C=C stretching modes. The strong band at 1273 cm−1 is due to the in-plane bending of C–H bonds. The FTIR
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • vibration with an experimentally selected frequency and amplitude. Structure, morphology, and chemical composition The carbon material quality was evaluated based on Raman spectra. Raman measurements were performed using a commercial Renishaw InVia Reflex Raman microscope equipped with an EMCCD (1600 × 200
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • vibration cos 2πf0t, f0 ± fm components of the electrostatic force Fele,L(f0 ± fm) appear: When the electrostatic force is detected by the FM method, the electrostatic force Fele,L(f0 ± fm) is demodulated into the fm component of the frequency shift ΔfL(fm), which is expressed as where k is the spring
  • consider the case in which the frequency of the AC bias voltage is higher than the cutoff frequency fc of the carrier transport between the interface and bulk states. We assume that the heterodyne FM method [21] is used and that an AC bias voltage with a high frequency near twice the vibration frequency of
  • vibration cos2πf0t, the f0 + fm component of the electrostatic force Fele,H(f0 + fm) appears: In the depletion region, In the accumulation and inversion regions, In the FM method, the electrostatic force Fele,H(f0 + fm) is demodulated into the fm component of the frequency shift ΔfH(fm). The resulting fm
PDF
Album
Full Research Paper
Published 31 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • , oleic acid, and undecylenic acid pure substances agree with those described in the literature [28][29]. At the beginning of the first stage (S0 Stage1 for each of the acids), one can observe peaks of iron(III) acetylacetonate in the spectra. The vibration bands of the carboxylate group νa (COO–) are
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • determined by using FTIR spectroscopy, as shown in Figure 3b. The formation of TiO2 on the Ti foil is indicated by the vibrations of the Ti–O bond in the wavenumber region from 450 to 750 cm−1 [47]. The bonding characteristics in the MoS2 material are presented by Mo–S vibration peaks between 1620 and 420 cm
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • MWCNTs, a typical peak at 1559 cm−1 is attributed to the vibration of C=C groups, whereas the peaks at 536, 1343, and 3394 cm−1 correspond to the C–O–C, C–C–O, and OH groups, respectively, on the MWCNTs [23]. For TiO2, a broad peak at 3404 cm−1 is attributed to the OH stretching, and another broad peak
  • at 621 cm−1 is assigned to the Ti–O and Ti–O–Ti stretching of TiO2 [24]. In addition, the spectrum of TiO2@MWCNTs shows the characteristic peak at 972 cm−1 of the vibration of Ti–O–C groups, indicating the formation of a covalent bond between TiO2 and MWCNTs [24]. The UV–vis diffuse reflectance
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • flavonoids, terpenes, tannins, and gallic acid; 1230 cm−1 corresponds to the tension of tertiary alcohols and flavonoids; 1026 cm−1 is related to C–O vibration in tannins and flavonoids; and 918 cm−1, 865 cm−1, and 705 cm−1 correspond to out-of-plane C–H vibration in gallic acid and catechin. According to
PDF
Album
Full Research Paper
Published 13 Dec 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • (shell) covered nanotubes to produce reinforced carbon–carbon composite nanotools; combining amorphous carbon with the extreme mechanical properties of CNTs can facilitate the production of nanotools with high aspect ratios. Inappropriate properties such as vibration and flexibility can be controlled
PDF
Album
Review
Published 03 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • suspension springs that reach through cylindrical tubes running through the LHe tank and are mounted on top of the tank. Together with the Eddy current damping system mounted at the bottom of the cryostat, this provides excellent vibration isolation such that a tip–sample gap stability better than 1 pm can
PDF
Album
Full Research Paper
Published 11 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • force–distance curve with each cantilever on a quartz glass sample (manufactured by Goodfellow, United Kingdom) and extracting its slope in the range of repulsive forces. Subsequently, we determined the bending stiffness Cn of each cantilever by analyzing its thermal noise vibration [18]. After
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • ± 3.0 cm−1 (Figure 2f,i), implying high-quality monolayer graphene. Together, the data further support uniformity and crystallinity of the sample. The G phonon band arises from double degeneracy of iTO and iLO phonon modes (E2g symmetry) at the Brillouin zone center, which is an in-plane vibration of
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • TiO2-NT, and pure Bi2WO6 powder samples, where all present two similar absorption bands at 1625 and 3420 cm−1 which can be indexed to the stretching vibration of adsorbed H2O and –OH group on the sample surface [37]. Apart from the 30%−Bi2WO6/TiO2-NT nanocomposite, the FTIR spectra of the other Bi2WO6
  • /TiO2-NT nanocomposites all exhibit three apparent absorption bands at approx. 555, 736, and 1077 cm−1, which are indexed to the stretching vibrations of Bi−O and W−O covalent bonds and to the bridge stretching vibration of the W−O−W bond in the Bi2WO6 phase, respectively [38]. All the FTIR spectra of
  • the Bi2WO6/TiO2-NT nanocomposites display bands centered at approx. 480 cm−1 which are assigned to the Ti−O stretching vibration in the TiO2 phase except for the 90%−Bi2WO6/TiO2-NT nanocomposite [39]. The FTIR spectrum of the pure Bi2WO6 powder exhibits similar absorption bands to those of the 90
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • cm−1 corresponding to the O–H stretching vibration originating from carboxyl groups. Besides, an intense peak at 1641 cm−1 was assigned to the C=O stretching of carboxyl and/or carbonyl groups, a sharp peak at 1387 cm−1 corresponding to a –OH bend, and a strong peak at 1068 cm−1 ascribed to an alkoxy
  • and/or epoxy C–O stretching vibration. The significant reduction of the FTIR signal intensity of ERGO for –OH, –C=O, and –C–O suggests the successful formation of ERGO due to the electrochemical deoxygenation of GO, which corroborates the Raman analysis. Figure 1D depicts a characteristic XRD peak of
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • Raman intensities, respectively. The integrated photoluminescence intensities are plotted in the range of 750 to 850 nm, and the Raman intensities are the integrated peak area from the vibration mode of CuPc at 1527 cm−1. Three regions are marked in Figure 2d and Figure 2e as the border (R1), border to
  • 1527 cm−1 are assigned to the C–C and N–C stretching vibrations of the isoindole ring [34][35]. The 746 cm−1 vibrational mode originates from the metal-bound N–M stretching vibration, and the 1138 cm−1 mode is attributed to the deformation of the isoindole ring system [36]. The Raman enhancement factor
  • () in Equation 1, which increases the electron transition probability rate (wlk) [21]. In particular, the vibration mode (746 cm−1) that is assigned to the metal-bound N–M stretching vibration shows a larger intrinsic dipole, leading to a dipole–dipole interaction with the Mo–Se bond of MoSe2. Thus, the
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • the GSH and Rh6G2 were successfully bound to the surface of GNPs. FTIR spectra of GNPs, GSH, GNPs-GSH, and GNPs-GSH-Rh6G2 are presented in Figure 2e. As citrate ions are attached on the surface of GNP, C=O, and C–O stretching vibration modes occur at 1655 and 1443 cm−1, respectively. The peaks of GSH
  • at 1650 and 1400 cm−1 were found in the IR spectrum of GNPs-GSH, which was attributed to the stretching vibration and the asymmetric stretching vibration of –COO−. The stretching vibration of S–H disappeared in GNPs-GSH due to the formation of Au–S bonds [47]. These results proved that GSH was
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • characterized by Raman spectroscopy. The Raman spectrum of the MoS2/FTO sample showed the characteristic peaks of the 2H and 1T phases of MoS2 (Figure 4b). The appearance of the J1, J2, and J3 peaks around 150, 226, and 326 cm−1 confirmed the presence of the 1T metallic phase. Whereas the two Raman vibration
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • +, characteristic band of the polaron radical cation); (6) 1412 cm−1 (phenazine structures); (7) 1498 cm−1 (C=N of the quinoid nonprotonated diimine units); (8) 1590 cm−1 (C=C stretching vibration of the quinonoid ring) [16][17]. Current–voltage and temperature analysis Figure 3 shows current–voltage
PDF
Album
Full Research Paper
Published 27 Apr 2022

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • , strain rate, harmonic displacement, and harmonic frequency were set as 2.0 μm, 0.05 s−1, 1.0 nm, and 75 Hz, respectively. The Poisson’s ratio of the tibia specimens was assumed to be 0.3 [14]. The allowable drift rate was set as 0.10 nm/s to minimize the effect of vibration and thermal drift during
PDF
Album
Full Research Paper
Published 22 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • component co-assembles with Myr and GSH. Fourier-transform infrared (FTIR) spectra were used to further confirm the self-assembly of the MZG nanoparticles. In Figure 2d, the two bands at 2522 cm−1 and 3350 cm−1 were assigned to the mercapto group (–SH) and the stretching vibration of the amino group (–NH2
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • techniques described by Hurley and co-workers [1]. These are collected for reference in Table 1. First, linear vibration cantilever modes are chosen as an orthogonal basis set upon which to project the PDE, defined as [38]: and normalized by Φi(L1) = 1 i = 1,2,3,…,N, where N is the number of basis functions
  • mode. As such, a ratio can be constructed between the first free vibration mode and the first contact vibration mode: This is used to back out L and from the measured frequencies f1, , and as well as the known β1L = 1.875 from free vibration theory of cantilevers [38]. By defining the relative tip
  • indentation model of Equation 3 are defined in conjunction with experimental observables. The adhesion force Fadh* and adhesion gap gadh are identified from the retraction force–distance curve taken just before vibration sweeps. While gadh is observed directly, Fadh requires multiplication with kcantilever
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • amplitude of the probe oscillations sharply drops to zero [24]. This phenomenon is usually caused by a combination of small oscillation amplitude, inappropriately low spring constant of the probe (and thus too low energy stored in the vibration), strong attractive forces caused by some surface layers (water
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • vibration at 1734.5 (Supporting Information File 1, Figure S1). Such peak shifts are also observed when NOR interacts with metal ions like NiO [41]. The zeta potential of these particles was found to be +29 mV, validating the loading of drug and indicating nanoparticle stability at neutral pH
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • expansion coefficient is presented in Figure 5a along with the pressure. The thermal expansion coefficient reveals the information about the amplitude regarding atomic lattice vibration which demonstrates how the alloy dimension changes when the external temperature is applied. It can be seen that by
  • defined as the highest temperature which can be reached due to individual vibration modes. Thus, these two important quantities (i.e., the Grüneisen parameter (γ) and the Debye temperature (θD)) are calculated as a function of temperature at zero pressure and presented in Figure 8. It can be seen that the
PDF
Album
Full Research Paper
Published 05 Oct 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • ]. In other cases, disruption and destabilization of the complex nanostructure subsequent to US vibration leads to drug release [28][29][30]. In addition, the ultrasonication of certain complexes can generate free radicals that can cause cell damage or activation of cellular signaling pathways [31
  • frequency is used for therapeutic applications and 2.5 to 15 MHz for diagnostic procedures according to the depth and type of the organ or tissue and the physics of the mechanical wave propagation [60]. Sound is a back-and-forth mechanical motion or vibration of molecules in a medium that transports energy
PDF
Album
Review
Published 11 Aug 2021
Other Beilstein-Institut Open Science Activities