Search results

Search for "atomic layer deposition" in Full Text gives 93 result(s) in Beilstein Journal of Nanotechnology.

UHV deposition and characterization of a mononuclear iron(III) β-diketonate complex on Au(111)

  • Irene Cimatti,
  • Silviya Ninova,
  • Valeria Lanzilotto,
  • Luigi Malavolti,
  • Luca Rigamonti,
  • Brunetto Cortigiani,
  • Matteo Mannini,
  • Elena Magnano,
  • Federica Bondino,
  • Federico Totti,
  • Andrea Cornia and
  • Roberta Sessoli

Beilstein J. Nanotechnol. 2014, 5, 2139–2148, doi:10.3762/bjnano.5.223

Graphical Abstract
  • in relation with their use as metallic precursors in coating technology, such as chemical vapour deposition (CVD) and atomic layer deposition (ALD) [21][22]. For instance, the reactivity of CuII(hfac)2, hfac− = hexafluoroacetylacetonate, was found to critically depend on the nature of the molecule
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
  • inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with
  • . Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. Keywords: atomic layer deposition (ALD); hybrid inorganic–organic thin films; molecular layer deposition (MLD); nanolaminates
  • ; nanostructuring; organic thin films; superlattices; thin-film technology; Introduction Many high-end technologies rely on our capability to fabricate thin films and coatings with on-demand tailored compositions and architectures in a highly controlled way. The atomic layer deposition (ALD) technique is capable
PDF
Album
Review
Published 22 Jul 2014

Growth and characterization of CNT–TiO2 heterostructures

  • Yucheng Zhang,
  • Ivo Utke,
  • Johann Michler,
  • Gabriele Ilari,
  • Marta D. Rossell and
  • Rolf Erni

Beilstein J. Nanotechnol. 2014, 5, 946–955, doi:10.3762/bjnano.5.108

Graphical Abstract
  • the topic of synthesis and characterization of the CNT–TiO2 interface. In particular, atomic layer deposition (ALD) offers a good control of the size, crystallinity and morphology of TiO2 on CNTs. Analytical transmission electron microscopy (TEM) techniques such as electron energy loss spectroscopy
  • /metal oxide material systems. Keywords: atomic layer deposition (ALD); carbon nanotubes; electron energy loss spectroscopy (EELS); interface; titanium dioxide (TiO2); transmission electron microscopy (TEM); Introduction Since the discovery by Iijima in 1991, carbon nanotubes (CNTs) have always been on
  • can be found in the review by Leary [19]. Recently, we have adopted the atomic layer deposition (ALD) technique to deposit TiO2 on CVD-grown MW-CNTs. ALD relies on self-limiting surface reactions (dissociative chemisorption) of gases which are alternately introduced into and purged out of the reaction
PDF
Album
Review
Published 02 Jul 2014

Atomic layer deposition, a unique method for the preparation of energy conversion devices

  • Julien Bachmann

Beilstein J. Nanotechnol. 2014, 5, 245–248, doi:10.3762/bjnano.5.26

Graphical Abstract
  • Julien Bachmann Institute of Inorganic Chemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany 10.3762/bjnano.5.26 Keywords: atomic layer deposition; batteries; energy conversion; electrochemistry; electrolysis; fuel cells; photovoltaics; solar
  • frameworks, is conferred with a direct relevance towards energy conversion applications. The conformal coating of non-planar samples is a property that uniquely defines atomic layer deposition (ALD) [3][4][5][6][7], which is why ALD is inherently suited to the preparation of energy conversion devices. ALD
PDF
Album
Editorial
Published 05 Mar 2014

Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

  • Nuri Yazdani,
  • Vipin Chawla,
  • Eve Edwards,
  • Vanessa Wood,
  • Hyung Gyu Park and
  • Ivo Utke

Beilstein J. Nanotechnol. 2014, 5, 234–244, doi:10.3762/bjnano.5.25

Graphical Abstract
  • aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement
  • coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. Keywords: atomic layer deposition; vertically aligned carbon nanotubes; continuum diffusion model; conformal coating
  • ceramic coating of the CNTs. Atomic layer deposition (ALD) is a highly attractive option for coating CNTs because it enables a wide range of ceramics and metals to be deposited conformally on arbitrary surface topologies with precise control of layer thickness [1][18]. However, vertically aligned CNT
PDF
Album
Full Research Paper
Published 05 Mar 2014

Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Grzegorz Luka,
  • Lukasz Wachnicki,
  • Sylwia Gieraltowska,
  • Krzysztof Kopalko,
  • Eunika Zielony,
  • Piotr Bieganski,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2014, 5, 173–179, doi:10.3762/bjnano.5.17

Graphical Abstract
  • -type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for
  • the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. Keywords: atomic layer deposition; hydrothermal method; solar cells; zinc oxide; zinc oxide nanorods; Introduction Solar cells are intensively studied as an alternative energy source and may replace
  • on zinc oxide nanorods grown by a hydrothermal method on top of p-type Si, covered on top with ZnO:Al films grown by atomic layer deposition (ALD) and acting as a transparent electrode. These simple and low costs solar cells show a power conversion efficiency, which we consider satisfactory
PDF
Album
Full Research Paper
Published 14 Feb 2014

3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

  • Loïc Assaud,
  • Evans Monyoncho,
  • Kristina Pitzschel,
  • Anis Allagui,
  • Matthieu Petit,
  • Margrit Hanbücken,
  • Elena A. Baranova and
  • Lionel Santinacci

Beilstein J. Nanotechnol. 2014, 5, 162–172, doi:10.3762/bjnano.5.16

Graphical Abstract
  • , University of Ottawa, 161 Louis-Pasteur St., Ottawa, ON, K1N 6N5, Canada 10.3762/bjnano.5.16 Abstract Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with
  • intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. Keywords: anodic aluminum oxide; atomic layer deposition (ALD
  • nanostructures are highly correlated with the technique of fabrication. Among the numerous methods that have been recently explored, the use of atomic layer deposition (ALD) to fabricate and/or functionalize nanostructures appears to be very promising. Catalysts grown by ALD often demonstrated similar or
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2014

Quantum size effects in TiO2 thin films grown by atomic layer deposition

  • Massimo Tallarida,
  • Chittaranjan Das and
  • Dieter Schmeisser

Beilstein J. Nanotechnol. 2014, 5, 77–82, doi:10.3762/bjnano.5.7

Graphical Abstract
  • Massimo Tallarida Chittaranjan Das Dieter Schmeisser Applied Physics - Sensors, Brandenburg University of Technology Cottbus–Senftenberg, Konrad-Wachsmann-Allee 17, 03046 Cottbus, Germany 10.3762/bjnano.5.7 Abstract We study the atomic layer deposition of TiO2 by means of X-ray absorption
  • influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems. Keywords: atomic layer deposition (ALD); charge transfer multiplet; covalency; energy conversion; quantum
  • by the band gap being too large, has been demonstrated in many systems [3]. Atomic layer deposition (ALD) is a chemical method to grow homogeneous thin films in an atomically controlled mode, which allows for the conformal coating of complex structures with precise thickness and a high degree of
PDF
Album
Full Research Paper
Published 22 Jan 2014

Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

  • Cathy Bugot,
  • Nathanaëlle Schneider,
  • Daniel Lincot and
  • Frédérique Donsanti

Beilstein J. Nanotechnol. 2013, 4, 750–757, doi:10.3762/bjnano.4.85

Graphical Abstract
  • tuned. Keywords: atomic layer deposition; buffer layer; indium oxi-sulfide; plasma enhancement; thin film solar cells; Introduction Chalcopyrite-type thin film solar cells that are based on a Cu(In,Ga)Se2 (CIGS) absorber have reached high efficiencies, up to 20.3% [1] in 2011 and 20.4% [2] on flexible
  • Cd-free buffer layers are based on zinc and indium-compounds, with current record efficiencies obtained by chemical bath deposition (CBD, 19.7% and 19.1% for Zn(S,O,OH) [4][5], 15.7% for In(S,O,OH) [6]) or atomic layer deposition (ALD, 18.5% for Zn(O,S) [7], 18.1% for (Zn,Mg)O [8], 16.4% for In2S3 [9
  • reported the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S, and either H2O or O2 plasma as oxygen sources. In2(S,O)3 films could only be obtained with O2 plasma as oxygen source, and all attempts to synthesize In2O3 remained unsuccessful. Thus, synthesis of In2
PDF
Album
Full Research Paper
Published 13 Nov 2013

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

  • Jörg Haeberle,
  • Karsten Henkel,
  • Hassan Gargouri,
  • Franziska Naumann,
  • Bernd Gruska,
  • Michael Arens,
  • Massimo Tallarida and
  • Dieter Schmeißer

Beilstein J. Nanotechnol. 2013, 4, 732–742, doi:10.3762/bjnano.4.83

Graphical Abstract
  • , Germany 10.3762/bjnano.4.83 Abstract We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were
  • not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films. Keywords: Al2O3; ALD; ellipsometry; PE-ALD; XPS; Introduction Thin aluminum oxide (Al2O3) layers deposited by atomic layer deposition (ALD) have
PDF
Album
Full Research Paper
Published 08 Nov 2013

Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

  • Gema López,
  • Pablo R. Ortega,
  • Cristóbal Voz,
  • Isidro Martín,
  • Mónica Colina,
  • Anna B. Morales,
  • Albert Orpella and
  • Ramón Alcubilla

Beilstein J. Nanotechnol. 2013, 4, 726–731, doi:10.3762/bjnano.4.82

Graphical Abstract
  • study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition
  • ) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm. Keywords: aluminum oxide (Al2O3); antireflection coating; atomic layer deposition
  • ) grown by atomic layer deposition (ALD) is a good alternative for passivating both lightly and highly doped n- and also p-type c-Si substrates [2][3][4]. The excellent passivation quality is due to a double effect: (i) chemical passivation that involves a low density of interface defects, Dit (≈1011 eV
PDF
Album
Full Research Paper
Published 06 Nov 2013

Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

  • Adib Abou Chaaya,
  • Roman Viter,
  • Mikhael Bechelany,
  • Zanda Alute,
  • Donats Erts,
  • Anastasiya Zalesskaya,
  • Kristaps Kovalevskis,
  • Vincent Rouessac,
  • Valentyn Smyntyna and
  • Philippe Miele

Beilstein J. Nanotechnol. 2013, 4, 690–698, doi:10.3762/bjnano.4.78

Graphical Abstract
  • , 19, Raina Blvd., LV 1586, Riga, Latvia 10.3762/bjnano.4.78 Abstract A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is
  • photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited
  • ultrathin ZnO films in optical sensors and biosensors. Keywords: atomic layer deposition; optical properties; photoluminescence; thin films; ZnO; Introduction Zinc oxide (ZnO) is an n-type semiconductor and a transparent conductive oxide (TCO) with excellent optoelectronic properties, a wide band gap
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2013

Preparation of electrochemically active silicon nanotubes in highly ordered arrays

  • Tobias Grünzel,
  • Young Joo Lee,
  • Karsten Kuepper and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2013, 4, 655–664, doi:10.3762/bjnano.4.73

Graphical Abstract
  • electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the
  • depend on the geometry. Keywords: atomic layer deposition; electrochemistry; lithium ion battery electrode; silica thermal reduction; silicon nanotubes; Introduction A significant research and development effort has been dedicated to the positive electrode materials of lithium ion batteries [1]. In
  • deposited into the pores conformally by atomic layer deposition (ALD). This method based on well-defined, self-limiting surface reactions carried out in a cyclic manner enables one to create films of accurately tunable thickness d on the surfaces of such porous substrates [12][13][14][15], Because silicon
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2013

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • structure of the TiO2:Eu core due to the perfect lattice matching possible in the homoepitaxial case. In order to investigate the possibility for generation of such coatings, TiO2:Eu nanoparticles were subjected to a post-processing step in an atomic layer deposition (ALD) chamber supplied with trimethyl
PDF
Album
Full Research Paper
Published 14 May 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
  • layer deposition (ALD). First the VA-CNTs were modified by chemical functionalization with a trimethylaluminium (TMA) monolayer or ex-situ Ar, O2 or Ar/O2 RF-plasma functionalization. Then, platinum was deposited by ALD. The gas-phase functionalization route was preferred in order to control the
  • distribution along the length of the tube, since defects are nucleation sites for NP growth [122]. Functionalization of VA-CNT arrays with platinum nanoparticles is promising in fuel-cell development [123]. Similar samples, i.e., platinum decorated VA-CNTs, were produced by Dameron et al. [124] using atomic
PDF
Album
Review
Published 22 Feb 2013

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • , such as chemical bath deposition, atomic layer deposition, ion layer gas reaction (ILGAR) deposition, evaporation, and spray deposition [9]. One interesting aspect of the above mentioned solar cell materials CdTe and Cu(In,Ga)Se2 is their high efficiency despite the abundance of grain boundaries (GBs
PDF
Album
Full Research Paper
Published 23 Mar 2012

Direct-write polymer nanolithography in ultra-high vacuum

  • Woo-Kyung Lee,
  • Minchul Yang,
  • Arnaldo R. Laracuente,
  • William P. King,
  • Lloyd J. Whitman and
  • Paul E. Sheehan

Beilstein J. Nanotechnol. 2012, 3, 52–56, doi:10.3762/bjnano.3.6

Graphical Abstract
  • circuits; a vacuum being essential both to preserve the cleanliness of the substrate and the deposited materials and to minimize the creation of defects [1]. Consequently, most deposition techniques from thermal evaporation to atomic layer deposition require a high level of vacuum, preferably ultra-high
PDF
Album
Letter
Published 19 Jan 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • methods for growing titanium dioxide particles and films on SAMs: Liquid-phase deposition (LPD), atomic-layer deposition, and sol–gel. Within the context of growing TiO2 on SAMs, the LPD method is probably the most popular. It employs a solution containing TiF62− anions together with boric acid. The
  • chains in the LB film plays a role in improving the capturing of the spheres. Atomic-layer deposition (ALD) is a gas–phase thin-film deposition method employing self-terminating surface reactions, leading to a linear correlation between the thickness of the layer and the number of deposition cycles
  • patterned, ultra-thin layers of ZrO2 were deposited by atomic-layer deposition on the exposed parts of the silicon substrate. The reported spatial resolution was striking: The nominal width of ZrO2 lines and SAM-coated Si lines was approximately 0.5 µm. This relatively high resolution should be attributed
PDF
Album
Review
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities