Search results

Search for "battery" in Full Text gives 109 result(s) in Beilstein Journal of Nanotechnology.

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • Anika C. Juhl Artur Schneider Boris Ufer Torsten Brezesinski Jurgen Janek Michael Froba Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute
  • the high theoretical specific capacity (1675 mAh·g−1) and specific energy (2600 Wh·kg−1) of sulfur the lithium–sulfur (Li–S) battery is a promising candidate to overcome this limitation and, thus, replace the Li–ion system [4][6]. Besides, sulfur offers the advantages of being naturally abundant, non
  • electrolyte used in the cell was 10 μL/mgsulfur. Galvanostatic measurements were performed at 25 °C in the potential range of 2.5–1.7 V versus Li/Li+ using a MACCOR Series 4000 (Tulsa, Oklahoma) multichannel battery cycler. A constant voltage step was applied at the end of charging until a current drop of 90
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks
PDF
Album
Review
Published 25 Apr 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
  • electrochemical rechargeable battery) is used to synthesize ATP molecules out of ADP and the orthophosphate Pi (the useful work done), in the case of ATP-synthase, or to produce mechanical motion by flagellar motors [1][3]. An ATP-synthase nanomotor can also operate in reverse [9], and the energy of ATP
  • hydrolysis can be used to pump protons against their electrochemical gradient to recharge the “battery”. These and similar nanomotors can operate at ambient temperature in a highly dissipative environment with nearly 100% thermodynamic efficiency defined as the ratio of useful work done to the input energy
  • example, highly efficient ionic pumps – the “Maxwell demons” of living cells working under the condition of strong friction. Plainly said, a dissipationless demon cannot charge a battery, it is futile. Therefore, the consideration of such a device as a “motor” cannot be scientifically justified. It is
PDF
Album
Review
Published 03 Mar 2016

Functional fusion of living systems with synthetic electrode interfaces

  • Oskar Staufer,
  • Sebastian Weber,
  • C. Peter Bengtson,
  • Hilmar Bading,
  • Joachim P. Spatz and
  • Amin Rustom

Beilstein J. Nanotechnol. 2016, 7, 296–301, doi:10.3762/bjnano.7.27

Graphical Abstract
  • corresponds to a hypothetical electrical output of approximately 1.6 nW. To determine the maximal electrical output of this Physarum/NEI/PGE “battery”, measurements using defined resistors were performed. This experiment revealed a peak of 3.31 nW at 4 MΩ (Figure 2d), emphasizing its potential use for energy
PDF
Album
Supp Info
Letter
Published 26 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • . Quantification was performed with external calibration curves (R2 ≥ 0.9999 for MB and R2 ≥ 0.9998 for RNAse, see Figures S1 and S2 in Supporting Information File 1). Additionally, some tests were performed applying an external stimulus (i.e., electric field) by using a battery of 9 V connected with two graphite
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • nitrogen might also confer useful chemical properties to graphene, e.g., rendering it catalytic to oxygen reduction reactions [24] or enhancing its lithium intercalation properties for battery applications [25]. Nitrogen doping was originally achieved ex situ by the post-growth treatment of pristine CVD
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

  • Jacek Wojnarowicz,
  • Sylwia Kusnieruk,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka,
  • Witold Lojkowski,
  • Wojciech Knoff,
  • Malgorzata I. Lukasiewicz,
  • Bartlomiej S. Witkowski,
  • Anna Wolska,
  • Marcin T. Klepka,
  • Tomasz Story and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2015, 6, 1957–1969, doi:10.3762/bjnano.6.200

Graphical Abstract
  • ][13][14], solar cells [10], catalysts [15], energy storage (battery) materials [16], fast data storage [17], light-emitting diodes (LEDs) [18], gas sensors [10], thermoelectric devices [19], varistors [20][21], window materials for displays [21], laser technology [10], surface acoustic wave devices
PDF
Album
Full Research Paper
Published 30 Sep 2015

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • final analysis, hydrides as a new concept for negative electrodes bridges Li-ion battery and hydrogen storage technologies together and can constitute a promising opportunity for the discovery and the achievement of new energy storage technology for the next 20 years. Gravimetric and theoretical
PDF
Album
Review
Published 31 Aug 2015

Materials for sustainable energy production, storage, and conversion

  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2015, 6, 1601–1602, doi:10.3762/bjnano.6.163

Graphical Abstract
  • well as their function when integrated into a battery electrode. Not only can a better understanding of the transport processes and chemical reactions at the microscale be gathered, but also the development of strategies for optimizing the electrode. Such a multiscale modeling approach is presented
PDF
Editorial
Published 23 Jul 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • devices, catalysis supports, battery electrodes, and many more. The research of carbon nanohybrid materials, including both the fundamental study of carbon nanostructures and the understanding of interface formation between nano-carbon and the host matrix, is essential to the understanding of their
PDF
Album
Review
Published 16 Jul 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany BASF SE, 67056 Ludwigshafen, Germany Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen
  • abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery
  • systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components
PDF
Album
Review
Published 23 Apr 2015

Multiscale modeling of lithium ion batteries: thermal aspects

  • Arnulf Latz and
  • Jochen Zausch

Beilstein J. Nanotechnol. 2015, 6, 987–1007, doi:10.3762/bjnano.6.102

Graphical Abstract
  • cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved
  • devices in general is the extremely complex chemical context in which those devices are operated [1]. There is no commercial battery which is produced from pure active materials for the electrodes and from a pure mixture of salt and solvent for the electrolyte alone. Usually, it is necessary to add soot
  • structure of the battery is as important as the material itself to obtain a “good” electrode, where “good” is defined with respect to the envisioned application and not with respect to the materials properties. Analogous modifications are necessary to obtain a good conducting electrolyte that is stable
PDF
Album
Full Research Paper
Published 20 Apr 2015

Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

  • Hamdi Baccar,
  • Atef Thamri,
  • Pierrick Clément,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2015, 6, 919–927, doi:10.3762/bjnano.6.95

Graphical Abstract
  • compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. Keywords: gas and vapour sensing; metal decoration
  • temperatures [18]) thus enabling the development of low-power sensors [13][19]. This is essential for achieving long-life, battery-operated, wearable detectors. Furthermore, carbon nanotube sensors can be easily miniaturised, which is not the case for electrochemical sensors [20]. Pristine carbon nanotubes are
PDF
Album
Full Research Paper
Published 09 Apr 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • energy storage [34][35], battery electrodes [24][36], catalysis [37][38] and nanowelding [39]. Shortly after their discovery in 1991, MWCNTs were filled with metals in order to create metal nanowires encapsulated within the CNT [10]. While this was the original inspiration behind the filling of TCNSs, it
PDF
Album
Review
Published 19 Feb 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • in an unknown background potential [36]. The study of, e.g., biological systems and battery materials necessitates the application of KPFM-like techniques in ionically-active liquids whilst presenting an opportunity to overcome the difficulties present under ambient conditions. Despite the urgent
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • reaction intermediates, especially those involving oxygen. These properties are especially important for catalytic applications such as water oxidation [9][10][11] and the oxygen reduction and evolution reactions in metal/air battery systems [12][13][14][15][16]. Additionally, the advantages of manganese
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments

  • Gordon M. Stachowski,
  • Christoph Bauer,
  • Christian Waurisch,
  • Denise Bargheer,
  • Peter Nielsen,
  • Jörg Heeren,
  • Stephen G. Hickey and
  • Alexander Eychmüller

Beilstein J. Nanotechnol. 2014, 5, 2383–2387, doi:10.3762/bjnano.5.247

Graphical Abstract
  • Gordon M. Stachowski Christoph Bauer Christian Waurisch Denise Bargheer Peter Nielsen Jorg Heeren Stephen G. Hickey Alexander Eychmuller Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany Li-Tec Battery GmbH, Am Wiesengrund 7, 01917 Kamenz, Germany Department of
PDF
Album
Full Research Paper
Published 10 Dec 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • ...” Count Alessandro Volta. Inspired by the first rechargeable magnesium battery prototype at the dawn of the 21st century, several research groups have embarked on a quest to realize its full potential. Despite the technical accomplishments made thus far, challenges, on the material level, hamper the
  • realization of a practical rechargeable magnesium battery. These are marked by the absence of practical cathodes, appropriate electrolytes and extremely sluggish reaction kinetics. Over the past few years, an increased interest in this technology has resulted in new promising materials and innovative
  • the most recent developments made and offer our perspectives on how to overcome some of the remaining challenges. Keywords: cathode; electrolyte; magnesium anode; magnesium battery; magnesium metal; Introduction Fueled by an ever increasing demand for electrical energy to power the numerous aspects
PDF
Album
Review
Published 18 Aug 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • thermally in parallel) can be used both to generate electrical power, if a temperature difference is maintained (by using for example a heater for TH and a heat sink for TC), and as a cooler, if electrical power is supplied by a battery. Even if in this review a particular emphasis on thermoelectric
PDF
Album
Review
Published 14 Aug 2014

Volcano plots in hydrogen electrocatalysis – uses and abuses

  • Paola Quaino,
  • Fernanda Juarez,
  • Elizabeth Santos and
  • Wolfgang Schmickler

Beilstein J. Nanotechnol. 2014, 5, 846–854, doi:10.3762/bjnano.5.96

Graphical Abstract
  • , even though the most common car battery, the lead battery, only works because lead is such a bad catalyst for hydrogen evolution. Also, mercury once plaid a pivotal role as the electrode material for polarography, which used to be an important analytical technique. In fact, the only Nobel prize that
PDF
Album
Full Research Paper
Published 13 Jun 2014

Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

  • Wolfgang M. Samhaber and
  • Minh Tan Nguyen

Beilstein J. Nanotechnol. 2014, 5, 476–484, doi:10.3762/bjnano.5.55

Graphical Abstract
  • plants with different module configurations such as tubular, plate and frame, or spiral wound. The given specific equipment costs are the turn-key costs of frame-mounted separation plants, including the CIP system, without the costs for local installation of buffer tanks and all out-side the battery
PDF
Album
Full Research Paper
Published 15 Apr 2014

Atomic layer deposition, a unique method for the preparation of energy conversion devices

  • Julien Bachmann

Beilstein J. Nanotechnol. 2014, 5, 245–248, doi:10.3762/bjnano.5.26

Graphical Abstract
  • semiconductors, molecules and ions in electrolytes. Figure 1 summarizes the particular types of charge and energy carriers in a solar cell (left), an electrode of a lithium ion battery (center), and the water oxidation electrode of an electrolyzer (right). Despite the variety of physical states and chemical
  • lithium ion battery (center), and the water oxidation electrode of an electrolyzer (or the oxygen-evolving complex in photosynthesis, right). An example of nanostructured interfaces in an energy conversion device: thylakoids for photosynthesis (micrograph adapted and reproduced with author permission; (c
PDF
Album
Editorial
Published 05 Mar 2014

Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

  • Nuri Yazdani,
  • Vipin Chawla,
  • Eve Edwards,
  • Vanessa Wood,
  • Hyung Gyu Park and
  • Ivo Utke

Beilstein J. Nanotechnol. 2014, 5, 234–244, doi:10.3762/bjnano.5.25

Graphical Abstract
  • been applied in battery [2][3][4][5] and supercapacitor electrodes [6][7][8][9][10][11][12], fuel cells [13], and sensors [14][15][16][17]. For many of the proposed applications of these CNT/ceramic hybrids, the performances of the devices depend crucially on the thickness and conformality of the
PDF
Album
Full Research Paper
Published 05 Mar 2014

Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

  • Benedikt Uhl,
  • Florian Buchner,
  • Dorothea Alwast,
  • Nadja Wagner and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 903–918, doi:10.3762/bjnano.4.102

Graphical Abstract
  • and the respective electrode surface (solid–liquid interface) is essential for developing improved future battery systems based on ILs. Correspondingly, the interaction between different ILs and various electrode materials was investigated by electrochemical methods, including, e.g., cyclovoltammetry
PDF
Album
Full Research Paper
Published 16 Dec 2013
Other Beilstein-Institut Open Science Activities