Search results

Search for "charge separation" in Full Text gives 78 result(s) in Beilstein Journal of Nanotechnology.

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  • Fredy Mesa,
  • William Chamorro,
  • William Vallejo,
  • Robert Baier,
  • Thomas Dittrich,
  • Alexander Grimm,
  • Martha C. Lux-Steiner and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Graphical Abstract
  • the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the
  • compare the SPV between the different samples. This is shown in the upper panel of Figure 3. While the etched Cu3BiS3 surface and the CdS and ZnS buffer layers exhibit a positive SPV, only the In2S3 buffer layer exhibits a negative SPV. This corresponds to charge separation due to band bending at the
  • , the spectrum of the light intensity is shown for comparison. There are distinct shoulders and peaks in the amplitude spectra, which are related to the onset of electronic transitions from which charge separation is possible and that depend also on the light intensity. A normalization of SPV spectra to
PDF
Album
Full Research Paper
Published 23 Mar 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • . A claim was made that similar paths yielding long-lived charge separation situations may be relevant also in natural photosynthetic systems, and should be considered in the development of dye-sensitized solar cells. In certain cases, feasibility studies with TiO2-containing systems were later
PDF
Album
Review
Published 20 Dec 2011

Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

  • Tanujjal Bora,
  • Htet H. Kyaw,
  • Soumik Sarkar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2011, 2, 681–690, doi:10.3762/bjnano.2.73

Graphical Abstract
  • improve the device performance through better charge separation in the photoelectrodes. In this regards, several reports have been previously published [19][20][21][22][23] demonstrating the rapid charge transfer and improved charge separation upon the incorporation of Au nanoparticles in ZnO- or TiO2
PDF
Album
Full Research Paper
Published 13 Oct 2011
Other Beilstein-Institut Open Science Activities