Search results

Search for "heating" in Full Text gives 734 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • temporal change in the temperature of deionized (DI) water when the NIR broadband and laser irradiation was on (heating) and off (cooling) over a period of 1800 s is shown in Figure S2 (Supporting Information File 1). The concentration-dependent temperature of the GNP suspensions measured over a period of
  • is no change in the optical absorption of the nanoparticles and that they are stable. Photothermal conversion efficiency of GNPs The photothermal conversion efficiency (η) of the GNPs was evaluated based on the obtained heating and cooling temperature profiles. The measured temperature profiles for
  • variation of the suspension temperature (heating and cooling) for different nanoparticle concentrations of (a) 40 nm GNSs, (b) 25 × 47 nm GNRs, (c) 10 × 38 nm GNRs, and (d) 10 × 41 nm GNRs under NIR broadband irradiation and (e) 40 nm GNSs, (f) 25 × 47 nm GNRs, (g) 10 × 38 nm GNRs, and (h) 10 × 41 nm GNRs
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • the optimal net power level ≈I2Rn of several milliwatts [24][27]. It is small enough for obviation of catastrophic self-heating, which is one of the major limiting factors for superconducting devices [17][27]. Simultaneously, it is large enough to enable emission above 1 mW, provided the radiation
PDF
Album
Full Research Paper
Published 26 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • also been obtained by depositing Au thin films on Si substrates with a thick silicon dioxide (SiO2) layer and subsequent rapid heating in reducing atmosphere. Here, the Si vapor source is silicon monoxide (SiO) gas produced by the decomposition of the SiO2 layer or the active oxidation of the Si
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • , where tip–surface forces would cause frequency shifts. We stabilise for any heating effect caused by the high-voltage pump applied to the piezoshaker by adding a temperature stabilisation tone with an offset of around 3 kHz, or more if the linewidth of the sense mode becomes comparable. This second pump
  • very similar heating effect as the red sideband pump. Keeping the sum of the voltages applied to the piezoshaker constant, will ensure that the heating power introduced in the system does not change when increasing the pump amplitude. Note that the amount of heating depends on both the piezoshaker used
  • shifts occur during the pump application and the aforementioned equation applies. The piezoshaker has a different heating response with respect to the signal frequency. Equation 4 requires an anti-Stokes pump with a perfectly tuned frequency. Bringing everything in frame, there are more points that have
PDF
Album
Full Research Paper
Published 19 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • changes in the far-field reflectivity resulting from Joule heating. A clear modulation of the materials’ optical constants can be inferred from the changed reflectivity, which is highly sensitive and dependent on the input current. The changed electrical permittivity of the active element is due to Joule
  • heating. Second, the resulting expansion of the metallic element is measured using scanning Joule expansion microscopy. The localised temperature distribution, and hence information about the localisation of the modulation of the optical constants of the system, can be extracted using this technique. Both
  • understood that heating affects the electrical permittivity of metals [25][26][27][28] and dielectrics [29][30]. This, in conjunction with Joule heating, is used to generate the desired effects. The active plasmonic element proposed (Figure 1) consists of a nano- or mesoscale constriction in a 48 nm thick
PDF
Album
Full Research Paper
Published 16 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • in [33]. In the considered material, the thermodynamic first-order phase transition is observed near room temperature. Heating the material above the transition temperature changes its magnetic behavior from antiferromagnetic to ferromagnetic and is accompanied by a significant change in the crystal
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • a temperature range of 25–900 °С (heating rate of 10 °C/min, N2 flux 80 mL/min). Before the TGA measurements, the nanoparticles were dried under vacuum at 50 °C. The average particle size was processed using the ImageJ software. The thickness of the organic shell of the stabilizer on the particle
  • 100–400 °C was used for heating. Fe(ІII) acetylacetonate (3 g, 8.49 mmol) was dissolved into the solvent of choice (30 mL; diphenyl, 1-octadecene, or paraffin). Different molar ratios of carboxylic acid (OA or UA) to Fe(III) acetylacetonate (in the ratio from 1:3.05 to 1:5.8) were used. The solution
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • ][15][16][17][18]. The performance of Josephson oscillators is limited by impedance mismatch [18][19] and self-heating [13][17][20][21]. Proper device engineering can obviate these obstacles and improve the performance [18]. A single JJ is able to emit EMWs, but with a low power [22]. Therefore
PDF
Album
Full Research Paper
Published 28 Dec 2022

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • approximately 10 mm × 20 mm, and ultrasonically cleaned in ethanol. Subsequently, a 30 nm thick Au electrode was deposited by resistance-heating evaporation using a crucible in a vacuum chamber. A polyurethane-coated Cu wire (25 μm diameter) was used as a mask to pattern the electrode shapes, as shown in Figure
PDF
Album
Full Research Paper
Published 19 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • thermal analyzer, with a heating rate of 20 °C/min, under a nitrogen atmosphere, and a temperature range of 30–800 °C. To carry out XRD, EDX, FTIR, and TGA analyses, the pineapple peel extract and the reaction products were previously dried at 110 °C for 24 h. Cell culture In a similar manner to [51], the
PDF
Album
Full Research Paper
Published 13 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • glass preparation comprised the following steps: (i) Preparation of raw materials, that is, the reagents were introduced in H3PO4 solution under continuous stirring. (ii) Drying of the mixture on an electrical heating plate at 130–140 °C. (iii) Thermal treatment of mixture, that is, the dried mixture
  • was heated up to 240 °C in an electrical oven, than introduced in an alumina crucible and heated in an electric furnace in two steps, namely a pre-melting step at low heating rate of about 50 °C/h from 240 up to 800 °C, followed by a melting step, at a higher heating rate of 250 °C/h, up to the
PDF
Full Research Paper
Published 12 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • combustion solution synthesis (CSS) to obtain a single-phase nanocrystalline lithium cobalt oxide (LiCoO2, LCO) with layered structure. We investigated the relationships between the heating temperature and (i) structural parameters (crystallite sizes, lattice parameters, and volume cells) by using XRD
  • °C for 5 h in air. The heating rate was 5 °C/min. The synthesis flowchart is presented in Figure 1. Characterization of LiCoO2 powders XRD analysis XRD analysis was performed on a Rigaku Smartlab 3 kW diffractometer equipped with a vertical goniometer. The diffractometer had a Bragg–Brentano θ/2θ
  • ), respectively. Phase impurities were not detected by XRD for any of the measured samples. The average size of the crystallites depends on the heating temperature used for the combustion synthesis of powders and lies between 37 and 90 nm (as calculated from the Scherrer formula taking into account instrumental
PDF
Album
Full Research Paper
Published 07 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • heating above 43 °C could induce apoptosis in cancer cells [30]. AB-LNPs showed excellent photothermal effects and photothermal stability with a temperature increase beyond 58 °C (Figure 2). Both Au- and BDP-grafted on LNPs could absorb light and convert the light energy into heat to achieve synergized
  • characterization of AB-LNPs. (a) Size distribution of Au-LNPs and AB-LNPs. Digital photo of AB-LNPs showing distinct Tyndall effects. (b) UV–vis spectra of BDP and AB-LNPs. (c) TEM image of AB-LNPs. Photothermal properties of AB-LNPs. (a) Photothermal heating curves for AB-LNPs at different BDP concentrations with
  • laser irradiation for 0–10 min (680 nm, 0.5 W/cm2). (b) Photothermal heating curves for AB-LNPs under 680 nm laser irradiation at different power densities for 0–10 min. (c) Photothermal heating curves of water, Au-LNPs (100 μM), BDP (100 μM), and AB-LNPs after laser irradiation (680 nm, 0.5 W/cm2). (d
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • then applied over the gelatin layer. Initially, a 10 percent (w/v) gelatin dispersion was made by heating 50 mL of ultrapure water on a magnetic stirrer to 60 °C, and then 1 mL of the dispersion was added to each well of the 24-well cell plates. The gelatin layer in the experimental model was cooled to
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • was fixed at 80 wt %. The obtained mixture was placed in a boat-type alumina crucible and subjected to heat treatment in a tube furnace at 900 °C for 3 h with a heating ramp rate of 5 °C/min under nitrogen atmosphere. Finally, the obtained MBN was naturally cooled to room temperature, washed multiple
PDF
Album
Full Research Paper
Published 22 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • shutdowns [17][18][19][20]) and of the facilities for subsequent processing of iron and steel. This results in huge energy losses and economic cost due to additional heating and idle running of the periphery of the blast furnace. To find prospects to reduce such losses, the Betriebsforschungsinstitut at
PDF
Album
Perspective
Published 17 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • environmentally friendly solvothermal method by the reduction of Na2TeO3 and passivation with polyvinylpyrrolidone (PVP), as reported elsewhere [15]. The procedure described by Wu et al. [15] for the synthesis of Te NWs was followed, with the modification of increasing the autoclave heating to 200 °C. All
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • burgundy to colorless. The reaction system did not change in color (it still appeared burgundy) after sufficient washing and heating, and no signal was detected by mass spectrometry (m/z 693). This indicates that the specificity of the colloidal gold nanoprobe is high enough to distinguish a target with
PDF
Album
Review
Published 03 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • , thus, a potential heating effect. It also maximizes the intensity of the light reflected back from the fiber-end/cantilever assembly to the measurement photodiode, which leads to about 50 μW on the measurement photodiode, which is part of a 10 MHz bandwidth current-to-voltage converter. The
PDF
Album
Full Research Paper
Published 11 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • microscopy (HR-TEM) on a JEOL JEM-2100. The thermal decomposition of zinc resinate to form ZnO NPs were studied by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) curves using thermal gravimetric analysis (DSC131, LABSYS TG/DSC1600, TMv), by heating up to 1000 °C at a heating rate
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • contrast, provides homogenous and effective heating and speed up the reaction to merely a few minutes. Hence, this approach is considered the fastest and simplest amongst the synthesis methodologies and has become widely used. The fluorescence emissions of CDs are usually blue and green (i.e., in the low
  • showed a direct relationship between PL intensity and heating temperature and time. These CDs had good green emission. The maximum emission wavelength clearly depends on the excitation wavelength at low temperatures. However, at high hydrothermal temperature, the luminous peak was almost completely
  • categorized into three groups based on the distinct doped atoms: nitrogen, nitrogen/sulfur, and nitrogen/phosphorus. Hydrothermal treatment as well as pyrolysis, microwave heating, and acid oxidation have been extensively used to synthesize the heteroatom-doped CDs. Nitrogen-doped CDs have been found to have
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • of CTC. Materials and Methods Preparation of photocatalysts The preparation of Bi2O3. Briefly, 5 g of Bi (NO3)3·5H2O was added into a crucible, then heated to 520 °C at a heating rate of 5 °C/min, and maintained for 2 h. Next, it was naturally cooled to room temperature and the resulting yellow bulks
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • surface layer of twinned B19’ martensite being pulled up along the growth of the nanodot. After heating the Ni40Ti60 surface to 100 °C, where the shape memory effect is expected to be activated due to the phase transition from B19’ martensite to B2 austenite, the surface surrounding the nanodot was found
PDF
Album
Full Research Paper
Published 22 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • the amount of wax to be evaporated. Here, three different amounts of wax (small amount: 700 µg, medium amount: 1400 µg, and large amount: 2800 µg) were placed on the heating plate heated up to 200 °C and evaporated to obtain different wettabilities of the samples. The distance between the heating
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • solves the equations of the stationary CEB theory [16]. We use the approach based on solving the heat balance equation [7]: where PN is Joule heating in the absorber. is the heat flux between electron and phonon subsystems, taken with the sixth power [17] due to low electron temperature in our
  • , and the coefficient β shows how much of PS comes back to the absorber. PA = IAV is the power due to Andreev heating current, V is the voltage drop across the NIS junction, and Pleak = V2/Rleak is the power associated with the leakage current. The quasi-particle tunneling current is written as: where V
  • of the tunnel barrier (larger resistance) and the corresponding decrease of the single-particle current, which withdraws hot electrons from the absorber. However, due to the lower Andreev heating current, which, when flowing through the normal metal absorber, leads to residual heating and, thus
PDF
Album
Full Research Paper
Published 07 Sep 2022
Other Beilstein-Institut Open Science Activities