Search results

Search for "high spatial resolution" in Full Text gives 82 result(s) in Beilstein Journal of Nanotechnology.

High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope

  • Mark Cronin-Golomb and
  • Ozgur Sahin

Beilstein J. Nanotechnol. 2013, 4, 243–248, doi:10.3762/bjnano.4.25

Graphical Abstract
  • the surface topography and local mechanical response with high spatial resolution [20][31]. This mode uses a T-shaped cantilever with an offset tip. When used in dynamic AFM, the cantilever vibrates up and down, similar to conventional cantilevers. In addition to the vertical motion, tip–sample
PDF
Album
Full Research Paper
Published 05 Apr 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • nm, which is well suited for high-energy implantation with high spatial resolution. The channels have a rhombic cross section that reflects the crystal structure of the mica. The mica mask is then placed on the surface of a diamond. Electrostatic forces ensure good sticking of the mica sheet on the
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Mapping mechanical properties of organic thin films by force-modulation microscopy in aqueous media

  • Jianming Zhang,
  • Zehra Parlak,
  • Carleen M. Bowers,
  • Terrence Oas and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 464–474, doi:10.3762/bjnano.3.53

Graphical Abstract
  • , including surface plasmon resonance (SPR) [58], quartz-crystal microbalance (QCM) [59][60][61] and ellipsometry [62]. These methods, however, do not resolve differences in the grafting density and packing of the molecules with high spatial resolution (micrometer or less). Here we show that FMM in solution
  • properties. Conclusion We showed that force-modulation microscopy (FMM) can be used to image organic thin films in aqueous environments with high spatial resolution and sensitivity to conformational details that affect the contact mechanics. FMM generated high-contrast amplitude and phase images of proteins
PDF
Album
Supp Info
Letter
Published 26 Jun 2012
Graphical Abstract
  • . Utilizing the high spatial resolution of AFM, various intriguing properties of liquid solvation [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19], especially hydration [8][9][11][12][13][14][15][18][19], have been newly revealed. It should be noted that, in addition to its high spatial resolution, AFM
PDF
Album
Full Research Paper
Published 19 Mar 2012

Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers

  • Johannes Stadler,
  • Thomas Schmid,
  • Lothar Opilik,
  • Phillip Kuhn,
  • Petra S. Dittrich and
  • Renato Zenobi

Beilstein J. Nanotechnol. 2011, 2, 509–515, doi:10.3762/bjnano.2.55

Graphical Abstract
  • developed to obtain chemical information with very high spatial resolution [1][2][3][4], or chemical information from very few molecules, and in some cases even single molecules [5][6][7]. The technique uses a metal or metalized AFM/STM tip to confine the laser energy focused by a confocal microscope
PDF
Album
Full Research Paper
Published 30 Aug 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • discussed images of F14H20 adsorbates also illustrate a high spatial resolution of surface potential and dC/dZ detection in the single-pass operation performed in the intermittent contact mode. A true spatial resolution of KFM is often determined as a width of a transition region between locations of
PDF
Album
Full Research Paper
Published 06 Jan 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • defects in oxide surfaces was studied by non-contact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM). Furthermore, the contact potential was determined by Kelvin probe force microscopy (KPFM). This technique has a high spatial resolution, thus avoiding averaging over various
  • with STM in UHV. In addition to imaging the topography of the surface termination, STS and KPFM were employed for a deeper insight into the nature of the defects. The spectroscopy was performed with a very high spatial resolution in the order of 1 nm. For magnesium oxide on Ag(001), different point
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities