Search results

Search for "hydrothermal method" in Full Text gives 88 result(s) in Beilstein Journal of Nanotechnology.

Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

  • Tianyu Xiang,
  • Feng Xin,
  • Jingshuai Chen,
  • Yuwen Wang,
  • Xiaohong Yin and
  • Xiao Shao

Beilstein J. Nanotechnol. 2016, 7, 776–783, doi:10.3762/bjnano.7.69

Graphical Abstract
  • Engineering, Tianjin University of Technology, Tianjin 300384, China 10.3762/bjnano.7.69 Abstract A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained
  • surface of the InTaO4 material. In this paper, we report the photocatalytic reduction of CO2 to methanol using CuO-loaded NaTaO3 catalysts. NaTaO3 nanocubes were synthesized via a hydrothermal method using Ta2O5 and NaOH. CuO was loaded onto the surface of NaTaO3 by impregnation, where CuO acts as a
  • NaTaO3 nanocubes were synthesized by a hydrothermal method as reported by Li et al. [31]. In a typical procedure, 0.442 g of Ta2O5 and a sufficient amount of NaOH were added into a Teflon-lined autoclave with a total volume of 50 mL, and deionized water was filled up to 40 mL. The autoclave temperature
PDF
Album
Full Research Paper
Published 01 Jun 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • bR. Results In this work, ZnO thin films (ZnO-TF) and ZnO nanorods (ZnO-NRs) were grown via the hydrothermal method on indium tin oxide (ITO) substrates (25 × 25 mm) and both structures were used for the preparation of a sensitive film for gas testing. The precursor solution (zinc acetate dihydrate
  • coating (Millman, single-stage coating unit) was performed at 3000 rpm for 20 s to obtain a thin film of ZnO nanoparticles. ZnO nanorod (ZnO-NR) synthesis ZnO-NRs were grown on the ZnO-TF substrate by the hydrothermal method [36][83]. Zinc nitrate hexahydrate (0.2 M) was used as a precursor salt and was
PDF
Album
Full Research Paper
Published 04 Apr 2016

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • Co3O4 electrodes. They observed, for example, an increase of the specific capacity from 190 mA·h·g−1 to 632 mA·h·g−1 at a current density of 200 mA·g−1 and also an increased rate capability [64]. In the latter report, the CNO hybrid material was prepared from KMnO4 and CNOs by a hydrothermal method
PDF
Album
Review
Published 04 Nov 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • cocatalyst. A simple hydrothermal method was used to synthesize NiS/CdS photocatalysts, which have a remarkably high QE of 51.3% at 420 nm in lactic acid sacrificial solution [27]. Co-loading of both reduction and oxidation cocatalysts on the semiconductor was also suggested to be able to enhance the
  • simple one-step hydrothermal method [33]. As schematically illustrated in Figure 5, the CdS nanoparticle was intimately enwrapped by the TNTs, resulting in a remarkably enhanced charge separation efficiency and thereby photocatalytic hydrogen production activity. The similar enwrapped structure can also
  • a big challenge to date. Selecting Cu2WS4 as model photocatalyst, we obtained interesting decahedral morphologies by a one-step hydrothermal method. The hydrothermal method avoids the using of toxic H2S gas and simplifies the catalyst preparation process. Owing to the oriented growth and the
PDF
Album
Review
Published 09 Jul 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • resistance to photobleaching. Up to now, many methods [112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127] are available for the fabrication of carbon nanodots, for instance, the electrochemical method, the microwave method, the ultrasonic method, the hydrothermal method. Due to
PDF
Album
Review
Published 23 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • nanocomposites have a larger surface area as compared to ZnO, which leads to enhanced adsorption of dye. Secondly, due to the decoration of ZnO with Ag nanoparticles, the recombination of electrons and holes are inhibited. Gao et al. [42] synthesized Ag–ZnO nanocomposites by a biomolecule assisted hydrothermal
  • method and studied their photocatalytic properties. They concluded that Ag nanoparticles improve the separation of electron and holes by acting as electron sinks. In our case, the photocatalytic efficiency is highest for sample AZ510, with nanodisk-like structures having higher surface area, and maximum
PDF
Album
Full Research Paper
Published 15 May 2014

High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

  • Leny Yuliati,
  • Melody Kimi and
  • Mustaffa Shamsuddin

Beilstein J. Nanotechnol. 2014, 5, 587–595, doi:10.3762/bjnano.5.69

Graphical Abstract
  • -University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia 10.3762/bjnano.5.69 Abstract Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic
  • activity of Cd0.1Zn0.9S was studied for the hydrogen production from water reduction under visible light irradiation. Results: Compared to the series prepared by the co-precipitation method, samples prepared by the hydrothermal method performed with a better photocatalytic activity. The sample with the
  • Ag-doped Cd1−xZnxS with high crystallinity. It has been reported that compared to the co-precipitation method, the hydrothermal method produced sulfide photocatalysts with better crystallinity, which gave higher activity for hydrogen production [9][16]. In the present work, the Ag(x)-doped
PDF
Album
Full Research Paper
Published 07 May 2014

One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach

  • Vincent Tiing Tiong,
  • John Bell and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2014, 5, 438–446, doi:10.3762/bjnano.5.51

Graphical Abstract
  • fabrication of high quality CZTS nanocrystals is desired. The hydrothermal method has been widely used to synthesize high quality nanocrystals with unique morphology and crystal structure due to its advantage of simplicity of the procedure and low production cost [10][11][12][13][14][15][16][17]. However, to
PDF
Album
Full Research Paper
Published 09 Apr 2014

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • hydrothermal method. The dye-sensitization of these Pt@TiO2 core–shell structures allows for a high photocatalytic activity for the generation of hydrogen from proton reduction under visible-light irradiation. When the dyes and TiO2 were co-excited through the combination of two irradiation beams with
  • . This indicates the retaining of the Pt nanoparticle cores after the hydrothermal reaction. As a control sample, Pt/TiO2 was prepared through the photodeposition of Pt (1% in mole fraction) onto pure TiO2 particles that were prepared through the same hydrothermal method without using Pt nanoparticles
  • for the proton reduction and H2 evolution on the uncovered surface area of Pt. For the control sample Pt/TiO2, the TiO2 particles were synthesized through a hydrothermal method that was followed by the photodeposition of Pt nanoparticles, as shown in Figure S2 (Supporting Information File 1). The TiO2
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014

Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Grzegorz Luka,
  • Lukasz Wachnicki,
  • Sylwia Gieraltowska,
  • Krzysztof Kopalko,
  • Eunika Zielony,
  • Piotr Bieganski,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2014, 5, 173–179, doi:10.3762/bjnano.5.17

Graphical Abstract
  • , Wroclaw, Poland Department of Mathematics and Natural Sciences College of Science, Cardinal Stefan Wyszynski University, Warsaw, Poland 10.3762/bjnano.5.17 Abstract Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p
  • the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. Keywords: atomic layer deposition; hydrothermal method; solar cells; zinc oxide; zinc oxide nanorods; Introduction Solar cells are intensively studied as an alternative energy source and may replace
  • on zinc oxide nanorods grown by a hydrothermal method on top of p-type Si, covered on top with ZnO:Al films grown by atomic layer deposition (ALD) and acting as a transparent electrode. These simple and low costs solar cells show a power conversion efficiency, which we consider satisfactory
PDF
Album
Full Research Paper
Published 14 Feb 2014

Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

  • Liang Wei,
  • Yongjuan Chen,
  • Jialin Zhao and
  • Zhaohui Li

Beilstein J. Nanotechnol. 2013, 4, 949–955, doi:10.3762/bjnano.4.107

Graphical Abstract
  • visible light. ZnIn2S4 is a ternary chalcogenide with a suitable band gap (2.34–2.48 eV) well corresponding to the visible light absorption. ZnIn2S4 exhibits two distinct polymorphs based on cubic and hexagonal lattices [16], which can be controlled synthesized via a facile hydrothermal method using
  • quantum efficiency of 51.3% at 420 nm was obtained in this system. Later on, several other reports have also reported the using of NiS as a co-catalyst for photocatalytic hydrogen evolution [40][41][42]. Herein, we reported the preparation of NiS/ZnIn2S4 nanocomposites via a two-step hydrothermal method
  • nanocomposites were facilely synthesized via a two-step hydrothermal method. The as-prepared NiS/ZnIn2S4 nanocomposites showed highly enhanced photocatalytic performance for hydrogen evolution under visible light irradiation. The highest photocatalytic hydrogen evolution rate (104.7 μmol/h), which is even higher
PDF
Album
Full Research Paper
Published 23 Dec 2013

Low-temperature solution growth of ZnO nanotube arrays

  • Ki-Woong Chae,
  • Qifeng Zhang,
  • Jeong Seog Kim,
  • Yoon-Ha Jeong and
  • Guozhong Cao

Beilstein J. Nanotechnol. 2010, 1, 128–134, doi:10.3762/bjnano.1.15

Graphical Abstract
  • lowered. Sun et al. reported the formation of aligned ultrathin ZnO nanotubes on a ZnO film using a hydrothermal method [27]. They mentioned that the synthesis conditions, such as pH of the solution and Zn2+ concentration, might influence the relative growth rates and the stability of different crystal
PDF
Album
Full Research Paper
Published 09 Dec 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • absorption spectra of ZnO nanorods grown by the conventional hydrothermal method and by microwave irradiation of comparable exposed surface area. Estimated effective area of ZnO nanorod surfaces on substrates of size 1 × 3 cm, grown at different reactant concentrations during the hydrothermal growth process
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities