Search results

Search for "intermolecular interactions" in Full Text gives 85 result(s) in Beilstein Journal of Nanotechnology.

Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group

  • Einat Tirosh,
  • Enrico Benassi,
  • Silvio Pipolo,
  • Marcel Mayor,
  • Michal Valášek,
  • Veronica Frydman,
  • Stefano Corni and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2011, 2, 834–844, doi:10.3762/bjnano.2.93

Graphical Abstract
  • bonds and from intermolecular interactions in the film. These results demonstrate the power and insights gained from cutting-edge AFM technologies, and advanced computational methods. Keywords: AFM; azobenzene; elastic modulus; molecular dynamics; nanomechanics; photoswitch; quantum mechanics
  • used here peaks at 730 nm, such that any quenching due to the 365 nm irradiation should be a minor effect [22]. The similarity of results from the MD (where intermolecular interactions play the dominant role) and QM (where only single-molecule stiffness is considered) models indicates that the
  • individual molecular bonds and the intermolecular interactions contribute in the same sense to the relative cis–trans film stiffness. Therefore, it is likely that the higher stiffness of the cis-configuration revealed here for partially disordered molecules would hold also for a close-packed SAM of the same
PDF
Album
Full Research Paper
Published 20 Dec 2011

STM study on the self-assembly of oligothiophene-based organic semiconductors

  • Elena Mena-Osteritz,
  • Marta Urdanpilleta,
  • Erwaa El-Hosseiny,
  • Berndt Koslowski,
  • Paul Ziemann and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2011, 2, 802–808, doi:10.3762/bjnano.2.88

Graphical Abstract
  • attached to it, and on the alkyl substitution pattern on the individual thiophene units. Theoretical calculations were performed to analyze the geometry and electronic density of the molecular orbitals as well as to analyze the intermolecular interactions, in order to obtain models of the 2-D molecular
  • scanning tunneling microscopy. Valuable information about intermolecular interactions taking place on substrates has been obtained [5][6][7]. Although the substitution pattern is regioregular and chemically controlled, the inherent chain length dispersity of poly(3-alkylthiophenes) leads to a mesoscopic
  • the devices, which are usually rendered flat by an organic hole-transporting layer. Despite the differences, a good approach to elucidate the bulk properties of the active molecules is to probe their intermolecular interactions on nonreactive substrates, such as HOPG, by means of STM. In this paper
PDF
Album
Full Research Paper
Published 07 Dec 2011

Surface induced self-organization of comb-like macromolecules

  • Konstantin I. Popov,
  • Vladimir V. Palyulin,
  • Martin Möller,
  • Alexei R. Khokhlov and
  • Igor I. Potemkin

Beilstein J. Nanotechnol. 2011, 2, 569–584, doi:10.3762/bjnano.2.61

Graphical Abstract
  • prominent properties of densely grafted comblike macromolecules is their high stiffness induced by strong intermolecular interactions of the side chains. It was suggested that this feature may lead to the creation of systems capable of LC ordering. Such ordering may appear in semidilute solutions of
PDF
Album
Full Research Paper
Published 12 Sep 2011

Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study

  • Berndt Koslowski,
  • Anna Tschetschetkin,
  • Norbert Maurer,
  • Elena Mena-Osteritz,
  • Peter Bäuerle and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 561–568, doi:10.3762/bjnano.2.60

Graphical Abstract
  • molecules exhibited almost identical interparticle distances pointing to repulsive intermolecular interactions, probably due to electrical dipoles formed by the adsorption. The lateral variation of the adsorption energy appeared to be relatively small allowing for tip-induced rotations and displacements of
PDF
Album
Full Research Paper
Published 09 Sep 2011

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • the recent progress in the field of the chemistry of polymer bioconjugation in which the biconjugation with amyloidogenic peptides is one of the most frequently used techniques. The resulting interplay of intermolecular interactions is affected by both the synthetic and peptide parts, leading to an
  • of compounds and moreover for polymer-bioconjugates, the available experimental evidence regarding the intermolecular interactions is in most cases limited to spectroscopic analysis (IR, UV–vis, CD spectroscopy) and diffraction patterns (X-ray, SAED) and thus the exact structural arrangement at the
  • twisted short fibers of 1' on the mica substrate. Due to the hybrid nature of 1', two opposing intermolecular interactions could dominate the self-assembly process, namely H-bonding and π–π stacking. Thus, a solvent-guided strategy was employed in order to gain control over the self-assembly process
PDF
Album
Review
Published 05 Sep 2011

Nanophotonics, nano-optics and nanospectroscopy

  • Alfred J. Meixner

Beilstein J. Nanotechnol. 2011, 2, 499–500, doi:10.3762/bjnano.2.53

Graphical Abstract
  • and can be regarded as a single-photon source; its optical properties demonstrate most naturally the quantum characteristics of light and reveal details of intermolecular interactions that would be otherwise hidden in an ensemble. Nanophotonics and nanospectroscopy shine light into this intriguing new
PDF
Video
Editorial
Published 30 Aug 2011

Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in two-dimensional self-assembly

  • Daniel Caterbow,
  • Daniela Künzel,
  • Michael G. Mavros,
  • Axel Groß,
  • Katharina Landfester and
  • Ulrich Ziener

Beilstein J. Nanotechnol. 2011, 2, 405–415, doi:10.3762/bjnano.2.46

Graphical Abstract
  • up surface-supported nanostructures [1][2]. Appropriately-directed intermolecular interactions are required to guarantee nearly perfect ordering of these monolayers. Hydrogen bonding interactions serve this purpose: They are directed, of intermediate strength, and adjustable [3][4]. The bis
  • Figure 9 and −29.5 kJ mol−1 for the alternative conformation, thus clearly favoring the first one. A similar 2D structure is found for 4,3'-PhSpPy (16) displaying a unit cell with a = 2.8 ± 0.2 nm, b = 1.7 ± 0.2 nm, and a,b = 93 ± 3° (Figure 10). We suggest a model with the corresponding intermolecular
  • interactions as for 2,3'-PhSpPy (13), i.e., the ortho-connected pyridine rings seem to dominate the packing pattern. An energetic estimation, corresponding to the considerations above, makes an alternative conformation with both nitrogen atoms of the 3-pyridyl rings pointing in the opposite direction unlikely
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2011

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

  • Michael Roos,
  • Benedikt Uhl,
  • Daniela Künzel,
  • Harry E. Hoster,
  • Axel Groß and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 365–373, doi:10.3762/bjnano.2.42

Graphical Abstract
  • intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4
  • exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. Keywords: graphene film; intermolecular
  • intermolecular interactions between adjacent molecules due to hydrogen bonding [1][2][3][4], covalent bonding [5][6], or, in the case of metal organic networks, by metal–ligand interactions [1][7][8][9]. In these cases, the interactions between the adlayer and the substrate, or more specifically, the local
PDF
Album
Full Research Paper
Published 12 Jul 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • clusters [33], or as single- or multilayer coatings [34]. The manipulation of nanoparticles, especially colloidal gold NPs, by AFM can be influenced by the structural characteristics of the particle, tip and surface, in particular the intermolecular interactions between tip and particle or particle and
  • results in a damage to the tip due to the high particle–substrate adhesion force. This strong adhesion between silicon substrate and hydrophilic coated nanoparticles primarily arises from intermolecular interactions. It may also involve a contribution from capillary bridges between the substrate and the
  • and vacuum environment A. Effect of relative humidity The presence of surface contaminants (dust or water) affects the mobility of nanoparticles as this directly changes the intermolecular interactions between the nanoparticles and the surface. As it has been discussed in subsection 2, a contribution
PDF
Album
Full Research Paper
Published 04 Feb 2011

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • kinks of the alkali halide crystals act as trapping points for the polar molecules, preventing them from diffusing freely over the surface. Simultaneously, intermolecular interactions force the cyano-porphyrins to form π–π stacks. These wires grow along the edges, forming long one-dimensional molecular
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011
Other Beilstein-Institut Open Science Activities