Search results

Search for "liposomes" in Full Text gives 79 result(s) in Beilstein Journal of Nanotechnology.

Cyclodextrin-poly(ε-caprolactone) based nanoparticles able to complex phenolphthalein and adamantyl carboxylate

  • Daniela Ailincai and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 651–657, doi:10.3762/bjnano.5.76

Graphical Abstract
  • nanovesicles based on natural macromolecular compounds, liposomes formed by autoassemble of phospholipids in aqueous medium [1], and nanovesicles formed by the autoassemble of synthetic amphiphilic copolymers, polymersomes [2]. There is a broad variety of conditions which have to be met, both for nanoparticles
PDF
Album
Full Research Paper
Published 16 May 2014

Nanoscopic surfactant behavior of the porin MspA in aqueous media

  • Ayomi S. Perera,
  • Hongwang Wang,
  • Tej B. Shrestha,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2013, 4, 278–284, doi:10.3762/bjnano.4.30

Graphical Abstract
  • = 0.31 and the experimental finding that vesicles are formed, which requires 0.5 < P < 1. Charge attraction/repulsion [30] apparently only plays a minor role, since the observed formation of liposomes does not strongly depend on the ionic strengths of the aqueous medium. The anisotropy of the negative
  • . Since MspA is a large surfactant, the requirement for thermal activation is comprehensible. It should also be noted that many classic vesicles/liposomes are not in their thermodynamic minimum [32]. Conclusion TEM has provided experimental evidence that the mycobacterial porin MspA forms vesicles at low
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2013

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • vehicles that can incorporate SN38 by chemical conjugation or physical entrapment. Polymeric micelles, liposomes and thermally sensitive polymer-based nanoparticles, as well as multi-armed-PEG-functionalized nanographene oxide, have been used as carriers for the delivery of SN38 into biological systems [21
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
  • whole system was then cured at 60 °C for 60 min. The lipid bilayer on the modified nanoporous alumina surface was prepared by the method of liposomal fusion [39]. The liposomes were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar Lipids, U.S.A.) by the following method
PDF
Album
Full Research Paper
Published 11 Feb 2011
Other Beilstein-Institut Open Science Activities