Search results

Search for "lithium" in Full Text gives 142 result(s) in Beilstein Journal of Nanotechnology.

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • derivatives as shape-controlling agents (SCAs) for application as anodes in lithium-ion batteries (LIBs). The physicochemical characteristics were investigated via XRD and FESEM, revealing well-crystallized α-Fe2O3 with adjustable nanorod lengths between 240 and 400 nm and aspect ratios in the range from 2.6
  • ; ethylenediamine; lithium-ion battery; shape-controlled synthesis; Introduction Since conventional transportation is seen as problematic in terms of fossil fuel consumption and human-induced greenhouse gas emissions [1], battery electric vehicles (BEVs) have moved into the focus of the automotive industry. As
  • power sources, lithium-ion batteries (LIBs) are considered as the most promising candidates, since LIBs offer the highest energy density of all known rechargeable battery systems [2][3][4]. In order to address today’s challenges of electromobility (e.g., customer acceptance of BEVs by extending driving
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • plethora of studies on the intercalation of different chemical species in TMDs have been reported from elements as small as lithium [51], sodium [52][53][54] and carbon [55] to elements as large as cesium [56][57] and gold [58]. Other studies report on the intercalation of silicon and other elements under
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • storage requirements with high performance are of great need because of rapid improvement of mobile and stationary electronic applications. Lithium-ion batteries have been one of the key energy storage devices to meet these energy demands since the last century [1]. However, increased capacity and energy
  • investigate the electrochemical performance of the produced freestanding composite cathodes, assembled in an Ar-filled glove box. In this coin cell, the produced cathodes were used as a working electrode, and lithium foil was used as an anode. 1 M lithium hexafluorophosphate (LiPF6) was dissolved in ethylene
PDF
Album
Full Research Paper
Published 14 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • –shell nanoparticles; emulsion polymerization; polyacrylonitrile; Introduction Due to their high specific surface area, chemical inertness, good mechanical stability and unique electrical properties, carbon nanospheres have numerous potential applications in nanocomposites [1], gas storage [2], lithium
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
PDF
Album
Full Research Paper
Published 23 Aug 2017

Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

  • Jayita Patwari,
  • Samim Sardar,
  • Bo Liu,
  • Peter Lemmens and
  • Samir Kumar Pal

Beilstein J. Nanotechnol. 2017, 8, 1705–1713, doi:10.3762/bjnano.8.171

Graphical Abstract
  • increased absorption window, FRET-enhanced photocurrent and the prevention of SQ2 aggregation. Experimental Reagents TiO2 nanoparticles (21 nm), protoporphyrin IX (PPIX), platinum chloride (H2PtCl6), lithium iodide (LiI), 4-tert-butylpyridine (TBP) and iodine (I2) were purchased from Sigma-Aldrich. Squarine
  • substrates via thermal decomposition of 5 mM platinum chloride (in isopropanol) at 385 °C for 30 min. 60 μm thick Surlyn was used as a spacer between the active and counter electrodes. The I−/I3− redox couple, which was prepared by mixing iodine crystal (I2), lithium iodide (LiI), and 4-tert-butylpyridine
PDF
Album
Full Research Paper
Published 17 Aug 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single
  • -nozzle microemulsion electrospinning (ME-ES) method followed by calcining. The experimental results indicated that TiO2 nanofibers with the higher TBT/paraffin oil ratio demonstrated more axially aligned channels and a larger specific surface area. Furthermore, they presented superior lithium-ion storage
  • −1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications. Keywords: anode; hierarchically porous TiO2 nanofibers; lithium-ion
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • as artificial cells [2], controlled transport and delivery of chemical agents (e.g., pharmaceutical drugs) [3], catalysis [4], lithium batteries [5] and confined reaction compartments (nanoreactors) [1]. Most fabrication methods of nanocages are based on bottom-up techniques, mainly colloidal and sol
PDF
Album
Full Research Paper
Published 08 Jun 2017

Structural properties and thermal stability of cobalt- and chromium-doped α-MnO2 nanorods

  • Romana Cerc Korošec,
  • Polona Umek,
  • Alexandre Gloter,
  • Jana Padežnik Gomilšek and
  • Peter Bukovec

Beilstein J. Nanotechnol. 2017, 8, 1032–1042, doi:10.3762/bjnano.8.104

Graphical Abstract
  • can be used as a cathode-active material for rechargeable lithium batteries [8], an electrode material for supercapacitors [9][10], and shows excellent catalytic activity for the selective oxidation of benzyl alcohols [11][12]. The catalytic properties are related to the redox cycling of various
  • Co2+ have been published. It seems that doping with cobalt allows for the preparation of materials with enhanced characteristics. In an attempt to modify α-MnO2 as cathode for high energy density lithium batteries, nanostructured MnO2, doped with 2 atom % Co, was synthesized [20]. In Co-doped
  • dopant so drastically affects the physical properties of the MnO2 matrix. Because of economic reasons MnO2 is one of the most attractive cathodes for rechargable lithium batteries. Since Mn is the tenth-most abundant element in the Earth crust, lithiated MnO2 cathodes would cost around 1% of LiCoO2, the
PDF
Album
Full Research Paper
Published 10 May 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • times the Young’s Modulus of a bare CNT sheet [40]. Emerging applications for ultrathin polymer films on nanostructured high aspect ratio structures include various energy storage devices and soft electronics. For instance, silicon based anodes are of interest for lithium ion batteries since Li–Si
  • alloys have an incredibly high gravimetric lithium storage capacity. He at al. have used MLD to encapsulate Si nanoparticles with alucone for this application [49]. The alucone layer prevents the formation of a resistive secondary electrolyte interphase (SEI), thus yielding improved electrode performance
  • . Gleason and coworkers, having previously shown pV4D4 as potential solid electrolyte, are exploring the Si nanowire assembly in Figure 8a as a route toward anodes for micro lithium ion batteries [39]. Figure 9e shows a corresponding, conformal pV4D4 coating on a lithium spinel oxide particle, a material
PDF
Album
Review
Published 28 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • ) and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs
  • fields. Material property requirements for specific applications Graphite is commercially used as an anode material for LIBs due to its large lithium storage capacity of 372 mAh·g−1. However, this is not sufficient for applications requiring high energy capacity. Single layer graphene has a high
  • theoretical lithium storage capacity of 744 mAh·g−1, but graphene has a tendency to stack due to van der Waals interactions between graphene layers [24]. The incorporation of TMO NPs inhibits the aggregation of graphene layers [25]. Poizot et al. first introduced the concept of utilising electrodes made of
PDF
Album
Review
Published 24 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • material of lithium-ion batteries (LIBs) because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as
  • precursor to prepare Fe2O3/COOH-MWCNT composites through a simple hydrothermal synthesis. When these composites were used as electrode material in lithium-ion batteries, a reversible capacity of 711.2 mAh·g−1 at a current density of 500 mA·g−1 after 400 cycles was obtained. The result indicated that Fe2O3
  • /COOH-MWCNT composite is a potential anode material for lithium-ion batteries. Keywords: anode material; carbon nanotubes; hydrothermal synthesis method; lithium-ion batteries; Introduction The depletion of non-renewable energy resources such as coal, petrol and natural gas has led to the urgent need
PDF
Album
Full Research Paper
Published 17 Mar 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • recent years, several CuO nanostructure syntheses and their applications have been reported. Different shaped CuO nanostructures such as nanowires, nanoplatelets, nanorods, and nanoflowers have been employed as the anode material for lithium ion batteries [4][5][6][7], and improved performance has also
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus
  • . Keywords: in situ reduction; lithium-ion battery; silicon anode; silicon nanorods; Introduction As one of the most popular secondary power sources, lithium-ion batteries (LIBs) are widely used in portable personal electronics, electrical vehicles and grid energy storage because of their high energy and
  • . Phosphorus-doped Si anodes are assumed to undergo less volume changes than undoped anodes during Li-ion insertion and extraction. This is because some positions are taken by phosphorus and phosphorus is inactive for Li-ion, which means less lithium will be intercalated. Meanwhile, phosphorus doping could
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • phosphate, potassium titanyl phosphate or lithium niobate. This effect can be ascribed to the fractal-like shape or statistical self-similarity of the AuNP arrangement [14]. The concept of fractal-like design in optics was introduced for the first time by Stockman [14]. In a chain of particles, the self
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • lithium diffusion coefficient, a higher specific capacity and lower values of charge transfer resistance, which can be related to the more uniform carbon coatings and to the significant content of sp2-hybridized carbon detected by XPS and by Raman spectroscopy. Keywords: carbon coatings; electrode
  • to the practical application of LiNi0.5Mn0.5O2 is related to the internal ion exchange (ion mixing) of Li+ and Ni2+ due to the very similar ionic radii. This process could be partially suppressed by the introduction of extra lithium into LiNi0.5Mn0.5O2. Extra lithium ions are usually located in the
  • modification, namely other cathode materials (LiMnPO4 [11], LiMn2O4 [12], LiCoO2 [13], LiNiO2 [14]) or simple binary compounds such as CaF2 [15], TiO2 [16], ZnO [17] and Al2O3 [18]. During the assembly of the lithium-ion cells, the cathode materials are always mechanically mixed with carbon black in order to
PDF
Album
Full Research Paper
Published 09 Dec 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable. Keywords: 1-phenylethanol route; lithium-ion battery; nanomagnetism; nanoparticles; nonaqueous sol–gel synthesis; zinc ferrite; Introduction Spinel ferrites of the
  • vacuum at 80 °C for 12 h. The areal loading was 2.4 mgZFO/cm2 on average. Coin-type cells with 600 µm-thick Li metal foil (Rockwood Lithium Inc.) and glass microfiber film separator (Whatman, GF/D grade) were assembled inside an argon-filled glovebox (MBraun) with [O2] and [H2O] < 1 ppm. The electrolyte
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g−1, it delivered a high reversible
  • capacity of 875.5 mAh g−1 after 200 cycles and 1005.5 mAh g−1 after 250 cycles with a significant coulombic efficiency of 99.5%. Keywords: carbon nanofiber network; electrospinning; lithium-ion battery; manganese oxide; nitrogen modification; Introduction Lithium-ion batteries (LIBs) have been identified
  • , a network of spindle-like carbon nanofibers anchored with MnO and N for LIB anodes was fabricated via a simplified synthesis route involving electrospinning followed by preoxidation in air and postcarbonization in Ar. The microstructure, chemical composition and electrochemical lithium storage
PDF
Album
Full Research Paper
Published 14 Sep 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to
  • mass of sulfur over 500 cycles. Keywords: carbon/sulfur composites; cycling stability; distribution of sulfur in pores; hollow carbon spheres; lithium–sulfur batteries; Introduction In the past 20 years, rechargeable lithium–ion batteries have proven to be superior energy storage devices and have
  • the high theoretical specific capacity (1675 mAh·g−1) and specific energy (2600 Wh·kg−1) of sulfur the lithium–sulfur (Li–S) battery is a promising candidate to overcome this limitation and, thus, replace the Li–ion system [4][6]. Besides, sulfur offers the advantages of being naturally abundant, non
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • introduction of heteroatoms in SWNTs can lead to novel properties. Heating may remove the attached functionalized groups. The functionalized SWNTs can be dissolved in organic solvents up to about 100 mg/L. The functionalization of SWNTs in liquid ammonia by reductive alkylation using lithium and alkyl halides
  • nanocomposites [2]. Oxidation of SWNTs: The oxidation of CNTs surface is possible by, for instance, heat treatment in oxygen and air, plasma treatment, chemical treatment and ozone treatment. Oxidation can also be carried out in lithium aluminum hydride solution [41]. Table 3 shows different oxidation methods
PDF
Album
Full Research Paper
Published 12 Aug 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • produced by using electrospinning from solutions of polymers based on polyacrylonitrile (PAN) and N,N-dimethylformamide (DMF) with ceramic nanoparticles of SiO2/TiO2/Bi2O3. PAN/SiO2 composite nanofibres are used as membranes in the production of air filters, gas absorbents and new types of lithium-ion
  • obtained composite mats, reinforced with silicon oxide, are a promising starting material that can be used to produce carbon anodes, which are used in lithium-ion batteries, after their subsequent treatment by carbonisation and chemical removal of the reinforcing phases in order to increase the porosity of
PDF
Album
Full Research Paper
Published 05 Aug 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • block copolymers. (A) Reaction scheme for the synthesis of poly(1,4-isoprene-block-ethylene oxide) block copolymers. Anionic polymerization of isoprene in toluene was initiated with sec-butyl lithium. Sequential polymerization of ethylene oxide was enabled by triisobutyl aluminium. (B) Size exclusion
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • characteristics [1] including antibacterial, ultraviolet-absorbing, photocatalytic, and self-cleaning properties [2]. Thus, TiO2 NPs are widely used in cosmetics, sun screens, ceramics, paints, packaging, lithium batteries, the food industry, and in medical applications [3]. However, the rapid development of
PDF
Review
Published 29 Apr 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas

  • Mario Hentschel,
  • Bernd Metzger,
  • Bastian Knabe,
  • Karsten Buse and
  • Harald Giessen

Beilstein J. Nanotechnol. 2016, 7, 111–120, doi:10.3762/bjnano.7.13

Graphical Abstract
  • process, we demonstrate the ability to selectively and reproducibly fill the gap region of nanoantennas with dielectric nanoparticles made of lithium niobate (LiNbO3) with high efficiency. The linear optical properties of the antennas are modified due to the large refractive index of the material. This
  • , depending on its microscopic nonlinearity. Results and Discussion One obvious idea drawn from these earlier experiments is thus to use standard nonlinear materials such as lithium niobate crystals (LiNbO3) or indium tin oxide (ITO) and selectively position them inside the gaps of nanoantennas, as shown in
  • increased spectral overlap of the laser source and the plasmon spectrum. There are actually several possible explanations for the observed behavior: Firstly, lithium niobate (under these circumstances) is a poor frequency converter. Lithium niobate exhibits an off-resonant nonlinearity which becomes
PDF
Album
Full Research Paper
Published 26 Jan 2016
Other Beilstein-Institut Open Science Activities