Search results

Search for "magnetic nanoparticles" in Full Text gives 105 result(s) in Beilstein Journal of Nanotechnology.

Thermal treatment of magnetite nanoparticles

  • Beata Kalska-Szostko,
  • Urszula Wykowska,
  • Dariusz Satula and
  • Per Nordblad

Beilstein J. Nanotechnol. 2015, 6, 1385–1396, doi:10.3762/bjnano.6.143

Graphical Abstract
  • size, morphology and shape from different synthetic methods. As far as the applications are concerned, the production of a desired size and good characterization of the obtained magnetic nanoparticles are very important factors. To obtain a desired range of diameters, strict control of the reaction
PDF
Album
Full Research Paper
Published 23 Jun 2015

The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

  • Olga A. Guselnikova,
  • Andrey I. Galanov,
  • Anton K. Gutakovskii and
  • Pavel S. Postnikov

Beilstein J. Nanotechnol. 2015, 6, 1192–1198, doi:10.3762/bjnano.6.121

Graphical Abstract
  • analysis were performed in order to characterize the resulting material. Keywords: arenediazonium salts; chemical reduction; covalent modification; surface-modified nanoparticles; zerovalent iron nanoparticles; Introduction Functionalized magnetic nanoparticles (NPs) have aroused great interest recently
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • treatments of samples include annealing in reactive gases [31], electron irradiation [27][28], or a combination of both [30][32][33][34]. Several approaches have already been proposed for the preparation of magnetic nanoparticles and their alloying, in particular, with the purpose of eventually using them
  • for ultrahigh-density data-storage media. Thus, driven by the need to accomplish the above demand, FePt magnetic nanoparticles were prepared using colloidal chemistry [35] and micellar methods [36]. The latter method was also extended to the preparation of CoPt nanoparticles [37]. Later on, it turned
PDF
Album
Full Research Paper
Published 29 Apr 2015

Interaction of electromagnetic radiation in the 20–200 GHz frequency range with arrays of carbon nanotubes with ferromagnetic nanoparticles

  • Agylych Atdayev,
  • Alexander L. Danilyuk and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2015, 6, 1056–1064, doi:10.3762/bjnano.6.106

Graphical Abstract
  • ], antennas and absorbing materials [18][19][20][21][22][23][24][25][26]. The absorption properties of CNT-based nanocomposites are primarily determined by the dielectric loss [27]. However, the intercalation of magnetic nanoparticles into the CNT matrix leads to the increase of the absorption properties due
PDF
Album
Full Research Paper
Published 24 Apr 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • magnetic nanoparticles which will have future applications in photo thermal therapy or drug delivery can be optimized by different analysis methods including NEXAFS spectroscopy with the HZB-TXM [65]. In the latter case as well as in the case of hybrid colloid particles the nanoparticles have sizes below
PDF
Album
Review
Published 27 Feb 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • will cover a full description of MRI-active and fluorescent multifunctional silica micro/nanospheres including the design of the probe, different characterization methods and their application in imaging and treatment in cancer. Keywords: bimodal imaging; fluorescence imaging; magnetic nanoparticles
  • shift to 580 nm in the case of Fe3O4@SiO2 NPs. The saturation magnetization value of the magnetic nanoparticles was observed to be 21 emu/g. The biocompatibility of these NPs was determined by incubating them with the human fibroblasts cells for which a cell viability of about 90% was observed even
PDF
Album
Review
Published 24 Feb 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • cross section of the material. It can be clearly seen that the spaces in between the layers mainly give signals for Fe. With the performed studies we could not observe a mineral gradient throughout the matrix arising from the synthesis of the magnetic nanoparticles produced by a diffusion approach
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • magnetic nanoparticles in the late 1970’s for the first time [83]. Nowadays, superparamagnetic iron oxide nanoparticle-based MRI contrast agents are used in clinical applications [84]. Further, iron oxide based nanoparticles are in focus of research for their application as MRI contrast agents, including
PDF
Album
Review
Published 05 Dec 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • cellular uptake of the magnetic nanoparticles and enhance their specific targeting effect, surface functionalization has to be employed to coat the nanoparticle surface with ligands that could specifically interact with the receptors overexpressed in the cell membrane. While the size of the dry
PDF
Album
Full Research Paper
Published 08 Oct 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • results indicate that camptothecin retains its biological activity after loading onto the magnetic nanoparticles. The proposed materials represent novel materials based on naturally occurring bioactive molecules loaded onto nanoparticles to be used as chemotherapeutic formulations. The procedure seems apt
  • to be extended to other active molecules extracted from natural products. In addition, these materials offer the potential of being further implemented for combined imaging and therapeutics, as magnetic nanoparticles are known to be multifunctional tools for biomedicine. Keywords: camptothecin
  • modification procedure with PEG the amount of CPT that can be loaded was greatly enhanced (in effect doubled) with respect to bare USM nanoparticles. No significant difference in the cytotoxic activity was observed among the CPT loaded on either the PEGylated or bare USM magnetic nanoparticles. Nevertheless, a
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Designing magnetic superlattices that are composed of single domain nanomagnets

  • Derek M. Forrester,
  • Feodor V. Kusmartsev and
  • Endre Kovács

Beilstein J. Nanotechnol. 2014, 5, 956–963, doi:10.3762/bjnano.5.109

Graphical Abstract
  • a methodology that is based upon a very powerful computational Monte Carlo technique to study the magnetic ordering in a system of dipolarly interacting magnetic nanoparticles distributed along 1D chains. They studied in detail the very interesting issue of the interplay between the nanoparticles
  • character (which, in the next section, we will describe by the constant of inter-particles interaction, J). Thus, our approach is consistent with the studies [10][11][12][13], which found by computational Monte Carlo techniques that the magnetization of the dipolarly interacting magnetic nanoparticles is
  • general conclusion of these papers was that a mean-field treatment is not adequate to study magnetic nanoparticle systems [10][11][12][13]. Therefore, in the present paper we developed a microscopic approach which is based on considering the dynamical behavior of magnetic nanoparticles with the use of
PDF
Album
Full Research Paper
Published 03 Jul 2014

Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

  • Amanee D Salaam,
  • Patrick Hwang,
  • Roberus McIntosh,
  • Hadiyah N Green,
  • Ho-Wook Jun and
  • Derrick Dean

Beilstein J. Nanotechnol. 2014, 5, 937–945, doi:10.3762/bjnano.5.107

Graphical Abstract
  • tumor types [6][7][8][9]. Currently, there are several clinically approved nanoparticle-based cancer drugs using liposomes, nanoparticle albumin-bound (nab) technology, dendrimers, polymeric, carbon, and metal nanoparticles [6][8]. Gold nanorods, iron magnetic nanoparticles, polymer nanospheres, lipids
PDF
Album
Full Research Paper
Published 01 Jul 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • -mannose (Figure 2c) were apparent in the spectrum of the surface-modified magnetic nanoparticles (Figure 2b). This suggests that the surface of the γ-Fe2O3 particles was coated with D-mannose (Figure 2). D-mannose may be bonded to the surface of the particles via the hydroxy group located on the C2 carbon
  • /mL) was pre-incubated in standard salt solution at 37 °C for 8 min, then magnetic nanoparticles (250 µg/mL; stock solution 4.4 mg/mL was diluted 18 times) were added to the synaptosomal suspension and incubated for 10 min. Uptake was initiated by the addition of 10 µM L-glutamate supplemented with
PDF
Album
Full Research Paper
Published 04 Jun 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • be multi-functional by hosting luminescent dye molecules or magnetic nanoparticles. As the growth rate over the side facets of a ZnO nanorod is much slower than that over the top facet, it would be more challenging to encapsulate large nanoparticles with size beyond the 100 nm regime into ZnO nanorod
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • heterostructured NP in gas condensation processes are discussed. Keywords: bimetallic magnetic nanoparticle; core–shell; magnetron sputtering; plasma gas condensation; Introduction Due to their size, novel physical properties and the possibility of contactless manipulation, magnetic nanoparticles can be employed
  • analysis. Future studies will aim at circumventing this problem by using a noble metal as the shell material. Conclusion We set up a plasma gas-condensation apparatus for the synthesis of nanoparticles and demonstrated the successful production of highly tunable elemental and CS-structured magnetic
  • nanoparticles. In contrast to earlier studies, in which a shell thickness of only several monolayers was reached [10], the present experiments demonstrate the capacity of plasma gas condensation to synthesize CS-NPs with much larger shell dimensions. Deposition of a 10 nm layer of Cu atoms on Ni cores was
PDF
Album
Full Research Paper
Published 14 Apr 2014

Hydrogen-plasma-induced magnetocrystalline anisotropy ordering in self-assembled magnetic nanoparticle monolayers

  • Alexander Weddemann,
  • Judith Meyer,
  • Anna Regtmeier,
  • Irina Janzen,
  • Dieter Akemeier and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2013, 4, 164–172, doi:10.3762/bjnano.4.16

Graphical Abstract
  • set of magnetic moments, we propose a model that relates the change of the hysteresis loops to a dipole-driven ordering of the magnetocrystalline easy axes within the particle plane due to the high spatial aspect ratio of the system. Keywords: dipolar particle coupling; magnetic nanoparticles
  • ; magnetocrystalline anisotropy; monolayers; Introduction Due to their wide range of applications in physical, biological and medical fields, magnetic nanoparticles have been thoroughly studied during the past few decades [1][2]. In this regard, various manufacturing techniques to synthesize particles with distinct
  • magnetic nanoparticles is zero if there is no external field applied. The situation changes if various types of interaction become important. A common example is given by ligand- or polymer-stabilized magnetic nanoparticles that tend to assemble in self-ordered two-dimensional arrays of high spatial
PDF
Album
Full Research Paper
Published 04 Mar 2013

Physics, chemistry and biology of functional nanostructures

  • Paul Ziemann and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 843–845, doi:10.3762/bjnano.3.94

Graphical Abstract
  • , in turn, stands alongside previous series. Of special interest appear those reports dealing with self-assembly on solid surfaces, micro- and mesoporous solids, electrical transport through nanostructures, nanooptical aspects, organic–inorganic hybrids and properties of magnetic nanoparticles. A much
PDF
Editorial
Published 11 Dec 2012

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • absorbs the oil by motion of the nanoparticles towards the oil in a magnetic field [12]. Magnetic nanoparticles are also of interest in enhanced oil recovery (EOR) since they can be dispersed in fluid and manipulated and monitored by an external magnetic field [13][14]. In both oil detection and EOR
PDF
Album
Full Research Paper
Published 15 Nov 2012

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe3O4 magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound
  • was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as
  • of hyperthermia with radiation therapy and chemotherapy can greatly improve the efficacy of cancer treatment [30][31]. Ultrasmall magnetic nanoparticles generate heat efficiently in an alternating magnetic field (AMF). Due to their superior properties, such as negligible or low toxicity
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Improvement of the oxidation stability of cobalt nanoparticles

  • Celin Dobbrow and
  • Annette M. Schmidt

Beilstein J. Nanotechnol. 2012, 3, 75–81, doi:10.3762/bjnano.3.9

Graphical Abstract
  • nanoparticles can effectively be protected against oxidation in order to improve their mid- to longterm stability. Keywords: cobalt nanoparticles; core–shell particles; isothermal oxidation; nanoscale passivation; parabolic rate constant; Findings Magnetic nanoparticles are currently given great attention due
PDF
Album
Supp Info
Letter
Published 30 Jan 2012

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • ; nanoparticles; Pt; XMCD; Introduction Magnetic nanoparticles (NPs), with narrow distributions of their size and mutual spacing, offer a high potential with respect to both, fundamental and applied studies [1][2][3][4]. Although a broad palette of methods has been established for the preparation of such NPs, if
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011

Organic–inorganic nanosystems

  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 363–364, doi:10.3762/bjnano.2.41

Graphical Abstract
  • be obtained with controllable particle size and inter-particle distance. In that case, the organic–inorganic nanosystem simply serves as an intermediate step towards the sought after particle arrangement. An application of this technique for the preparation of magnetic nanoparticles is described in
  • another recent Thematic Series about the preparation, properties and applications of magnetic nanoparticles in the Beilstein Journal of Nanotechnology [2]. In the present context, the wide field of ligand-stabilized nanoparticles should also be mentioned. Here, each particle represents an organic
PDF
Video
Editorial
Published 12 Jul 2011

Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles

  • Srinivasa Saranu,
  • Sören Selve,
  • Ute Kaiser,
  • Luyang Han,
  • Ulf Wiedwald,
  • Paul Ziemann and
  • Ulrich Herr

Beilstein J. Nanotechnol. 2011, 2, 268–275, doi:10.3762/bjnano.2.31

Graphical Abstract
  • Abstract Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy
  • -organization of magnetic nanoparticles, as demonstrated first by Sun and co-workers [5] and subsequently by applying micellar preparation techniques [6], has opened up new possibilities for generating this type of media. Another approach for stabilization of the magnetization in small particles is the coupling
  • sensors. In this context, it should be noted that magnetic nanoparticles also have applications in other fields, such as medical treatment, diagnostics and imaging [9]. A precise control of the magnetic anisotropy energy is most important for the design of future magnetic data storage media. The total
PDF
Album
Full Research Paper
Published 01 Jun 2011

Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

  • Armin Kleibert,
  • Wolfgang Rosellen,
  • Mathias Getzlaff and
  • Joachim Bansmann

Beilstein J. Nanotechnol. 2011, 2, 47–56, doi:10.3762/bjnano.2.6

Graphical Abstract
  • process might be accompanied by a complex reshaping of the particles. Keywords: epitaxy; iron; magnetic nanoparticles; Ni(111); RHEED; spontaneous self-alignment; STM; W(110); XMCD; Introduction Ferromagnetic clusters and nanoparticles have gained huge interest due to their interesting fundamental
  • energy is dissipated into the substrate. Depending on the available total energy and the size of the particles, the latter may realign or even reshape on the surface with respective consequences for their resulting properties. Results and Discussion In previous works it was found that magnetic
  • nanoparticles show surprisingly strong variations in their properties – such as the magnetic anisotropy energies or microscopic spin and orbital contributions to the total magnetization – when being in contact with different substrates or embedded into different matrices [20][38][42][43][44]. Here, we focus on
PDF
Album
Full Research Paper
Published 21 Jan 2011

Magnetic interactions between nanoparticles

  • Steen Mørup,
  • Mikkel Fougt Hansen and
  • Cathrine Frandsen

Beilstein J. Nanotechnol. 2010, 1, 182–190, doi:10.3762/bjnano.1.22

Graphical Abstract
  • 10.3762/bjnano.1.22 Abstract We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a
  • collective state of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order
  • ferrimagnetic Fe3O4 layers with a Curie temperature of about 850 K. Similarly, an increase of the Curie temperature of ferrimagnetic γ-Mn2O3 due to interaction with antiferromagnetic MnO has been found in MnO/γ-Mn2O3 core–shell particles [6]. The magnetic properties of non-interacting magnetic nanoparticles are
PDF
Album
Review
Published 28 Dec 2010
Other Beilstein-Institut Open Science Activities