Search results

Search for "microelectronics" in Full Text gives 81 result(s) in Beilstein Journal of Nanotechnology.

A look underneath the SiO2/4H-SiC interface after N2O thermal treatments

  • Patrick Fiorenza,
  • Filippo Giannazzo,
  • Lukas K. Swanson,
  • Alessia Frazzetto,
  • Simona Lorenti,
  • Mario S. Alessandrino and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2013, 4, 249–254, doi:10.3762/bjnano.4.26

Graphical Abstract
  • experimental values. Acknowledgements The authors would like to thank S. Di Franco for his support during fabrication of the device prototypes. ST Microelectronics R&D in Catania is acknowledged for funding and invaluable assistance. This work was partially funded by the Marie Curie ITN NetFISiC (EC FP7 grant
  • agreement no. 264613), by the national project PON Ambition Power (PON01_00700), and by ST Microelectronics, Catania (under the research contract 04.03.2011.002 D.B. Legal Dept. 3774).
PDF
Album
Full Research Paper
Published 08 Apr 2013

Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

  • Gabriele Fisichella,
  • Salvatore Di Franco,
  • Patrick Fiorenza,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Cristina Tudisco,
  • Guido G. Condorelli,
  • Nicolò Piluso,
  • Noemi Spartà,
  • Stella Lo Verso,
  • Corrado Accardi,
  • Cristina Tringali,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2013, 4, 234–242, doi:10.3762/bjnano.4.24

Graphical Abstract
  • properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate), briefly PEN), suitable for microelectronics and flexible electronics applications
  • microelectronics; poly(ethylene-2,6-naphthalene dicarboxylate) or PEN, a transparent polymer analogue to the more common PET, but with stronger mechanical resistance, higher degradation temperature and higher chemical inertness in acid and alkaline conditions, which can be useful for transparent and flexible
PDF
Album
Full Research Paper
Published 02 Apr 2013

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • -off (Figure 7b). We ascribe this to nonvertical growth of the trench walls due to transport-limited deposition, similar to subconformal Cu deposition in microelectronics [55][56]. Besides the definition of the lateral dimensions, another point of interest is the surface topography. Reminding ourselves
PDF
Album
Full Research Paper
Published 06 Feb 2012

X-ray spectroscopy characterization of self-assembled monolayers of nitrile-substituted oligo(phenylene ethynylene)s with variable chain length

  • Hicham Hamoudi,
  • Ping Kao,
  • Alexei Nefedov,
  • David L. Allara and
  • Michael Zharnikov

Beilstein J. Nanotechnol. 2012, 3, 12–24, doi:10.3762/bjnano.3.2

Graphical Abstract
  • semiconductor microelectronics devices, although very efficient and compact, are being pushed to their physical limits in terms of further miniaturization with associated issues such as electrical leakage and heat dissipation, and hence this is driving consideration of entirely new types of platforms. One
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed. Keywords: photocatalysis; remote degradation; self-assembled monolayers; titanium dioxide
PDF
Album
Review
Published 20 Dec 2011

The atomic force microscope as a mechano–electrochemical pen

  • Christian Obermair,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 659–664, doi:10.3762/bjnano.2.70

Graphical Abstract
  • numerous applications including in the fields of microelectronics, nanoscale electronics and nano-electromechanical systems (NEMS). Considerable progress was achieved recently in the field of self-organized electrochemical patterning of nanowires. In thin-film electrolytes, regular arrays of nanowires were
PDF
Album
Full Research Paper
Published 04 Oct 2011
Other Beilstein-Institut Open Science Activities