Search results

Search for "nanotechnology" in Full Text gives 648 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • Ha Huu Do Iqra Rabani Hai Bang Truong VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea Optical Materials Research Group
PDF
Album
Review
Published 20 Sep 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • , India Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India 10.3762/bjnano.14.75 Abstract Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery
PDF
Album
Review
Published 04 Sep 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • . Acknowledgements We would like to acknowledge Dr. Irene Andreu for her help collecting and analyzing SEM images. Funding This work was supported by NSF OIA-1655221. SEM images were acquired at the RI Consortium for Nanoscience and Nanotechnology, a URI College of Engineering core facility partially funded by the
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • Matthias Mail Kerstin Koch Thomas Speck William M. Megill Stanislav N. Gorb Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, D
PDF
Album
Editorial
Published 03 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • . Furthermore, several domains of nanotechnology and industry use nanoscaled samples that need to be controlled to an extreme level of precision. To reduce the irradiation-induced damage and to limit the interactions of the ions with the sample, low-energy ion beams are used because of their low implantation
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • is an important topic in the field of nanotechnology. However, AgNPs synthesized in that way have a number of drawbacks such as high cost and low stability. Typically, AgNPs are loaded onto polymers/composites in order to enhance their performance in usage [4][10][12]. Among polymers, polysaccharides
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

Nanoarchitectonics for advanced applications in energy, environment and biology: Method for everything in materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 738–740, doi:10.3762/bjnano.14.60

Graphical Abstract
  • 10.3762/bjnano.14.60 Keywords: functional materials; materials science; nanoarchitectonics; nanotechnology; The advancement of society depends on functional materials that are available and systems that are generated by the population. We can say that the development of advanced civilizations happens in
  • the creation of functional materials that improved human life. In the course of their development, we have learned that the function of a material depends not only on the material itself but also on the precision of its internal structure. This is where nanotechnology has brought about a revolution
  • . Nanotechnology has enabled the observation and analysis of the properties of objects at the nanoscale level, down to molecules and atoms. Then, by understanding and creating new nanostructures it became possible to create materials with unprecedented high functionality. Society has brought about amazing progress
PDF
Album
Editorial
Published 19 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • persistent organic pollutants (POPs) also contributes to water pollution, increasing global environmental pollution. Recently, the reduction and conversion of CO2 into fuel as valuable hydrocarbon products has been drawing attention from scientists in materials science, chemical engineering, nanotechnology
  • We sincerely thank the authors who contributed with quality articles to this Thematic Issue. We also thank the editorial team of the Beilstein Journal of Nanotechnology, especially the support from Dr. Barbara Hissa and Dr. Lasma Gailite for the completion of this Thematic Issue.
PDF
Album
Editorial
Published 13 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • Sanju Tanwar Aditi Sharma Dhirendra Mathur Centre of Nanotechnology, Rajasthan Technical University, Kota, Rajasthan, India Materials Research Centre, Malaviya National Institute of Technology, Jaipur, Rajasthan, India 10.3762/bjnano.14.56 Abstract Graphene quantum dots (GQDs) were made via a
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • instrumentation or highly skilled technical experts. Given the many benefits of nanomaterials, it is anticipated that the incorporation of nanotechnology in sensing would lead to the development of a diagnostic tool for detecting hormone and antibiotic residues in diverse single or multiple matrices. Other
PDF
Album
Review
Published 01 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • , Chiba 277-8561, Japan 10.3762/bjnano.14.35 Abstract The development of nanotechnology has provided an opportunity to integrate a wide range of phenomena and disciplines from the atomic scale, the molecular scale, and the nanoscale into materials. Nanoarchitectonics as a post-nanotechnology concept is a
  • are introduced, and future prospects of nanoarchitectonics are discussed. The fusion of basic science and the application of practical functional materials will complete materials chemistry for everything. Keywords: local probe chemistry; materials chemistry; nanoarchitectonics; nanotechnology; on
  • -surface synthesis; Review Introduction Nanotechnology is a game changer that has innovated the course of scientific research. Nanotechnology innovations have unlocked mysteries at the nanoscale [1][2][3]. These research innovations have bridged the gap between nanoscale basic science and materials
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • Advanced Materials Center, Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80–233 Gdańsk, Poland National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, ul. Czerwone Maki 98, 30-392
  • obtained on an ultrahigh vacuum spectrophotometer at a pressure below 1.1 × 10−8 mbar at room temperature (Omicron NanoTechnology). Photoelectrons were detected by a spectrophotometer equipped with a 128-channel collector. The X-ray anode was operated at 15 keV and 300 W. The chemical composition
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • Pau-Loke Show Kit Wayne Chew Wee-Jun Ong Sunita Varjani Joon Ching Juan Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates Centre for Energy and Environmental Sustainability, Lucknow, India Nanotechnology & Catalysis Research Centre (NanoCat
  • -assembly; wet chemical reduction; The widespread use of nanotechnology has reached almost every sector in our daily lives and amazed the world by offering various potential applications in these sectors. The uprising wave of nanotechnology and its application are now prominent in the fields of chemistry
  • and biomedicine, which are vital as these fields serve as a basis for the discovery of new molecules that may benefit humans. Nanotechnology contributed to the advancement of promising techniques either by the implementation of existing methods or by the establishment of new ones. Researchers in
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • ; Introduction In recent years, nanoscale studies have become an important research area thanks to the ever increasing means of synthesis, characterization, and application of nanoscale materials (1 to 100 nm). Progress and development in nanotechnology have started to make a difference in various areas
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • Nanotechnology”’s editorial that “few studies offer consistent results that are of value, and it is difficult to compare studies because they are often carried out using poorly characterized nanomaterials and arbitrary experimental conditions” [9]. In addition to the difficulty of interexperimental and
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • nanotechnology and the use of nanoparticles as drugs, researchers have faced new problems, such as nanotoxicity and pathological consequences of their use. Therefore, knowledge about mechanisms and consequences of endothelial leakiness (NanoEL) caused by nanoparticles is crucial to develop effective and safe
  • providing a new therapeutic approach that could also be applied in noncancerous applications [41]. Therapeutic and pathological consequences of NanoEL The development of nanotechnology creates a number of possibilities in the synthesis of NPs with the desired physicochemical properties, which will determine
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic
  • clinical translation prospects, and the associated challenges are discussed. Keywords: cancer cell biomimetics; nanoparticles; precision medicine; targeted therapy; theranostic nanomedicine; Review 1 Introduction Biomimetic nanotechnology, an emerging interdisciplinary field, involves different
  • environment (TME) because of immune evasion and cancer targeting abilities [15]. Moreover, biomimetic nanoparticles provide significant advantages regarding biocompatibility, low cytotoxicity, and structural support [16]. With the rapid development of biomimetic nanotechnology different types of derived
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • bioavailability and pharmacokinetic parameters. Notably, the failure of delivery at the right time and at the right place contributes to severe systemic toxicities and ineffectiveness. Successful translation of scientific knowledge of the mechanisms of resistance combined with nanotechnology as a tool for
PDF
Album
Review
Published 22 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • epitaxial line structures inside the decomposition cavity. Supporting Information Supporting Information File 36: Additional OM, LSM, SEM, EDS and XRD measurements. Acknowledgements Joachim Döll from the Center of Micro- and Nanotechnology (ZMN), a DFG-funded core facility at TU Ilmenau, is acknowledged
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • of nanotechnology. Fundamental research in atomic interactions, molecular reactions, and biological cell behaviour are key focal points, demanding a continuous increase in resolution and sensitivity. While renowned fields such as optomechanics have marched towards outstanding signal-to-noise ratios
  • ; Introduction Atomic force microscopy has established itself as one of the most powerful tools in nanotechnology. With meticulous setups amassing techniques such as ultra high vacuum, cryogenic temperatures, and CO-terminated tips, it is able to create a wonderful vista of surfaces, not missing the atoms for
PDF
Album
Full Research Paper
Published 19 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • ][3]. However, the overuse of antimicrobials since the 1950s has caused bacteria and fungi to develop strong antibiotic and antiseptic resistance [4][5][6]. Due to its versatility, nanotechnology has the potential of offering innovative, cost-effective and industrially viable solutions. Specifically
PDF
Album
Full Research Paper
Published 12 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • Anatolie S. Sidorenko Horst Hahn Vladimir Krasnov Institute of Electronic Engineering and Nanotechnologies of the Technical University of Moldova, Academiei 3/3, Chisinau 2028, Moldova I.S. Turgenev Orel State University, Komsomolskaya str. 95, 302026, Orel, Russia Institute of Nanotechnology
PDF
Editorial
Published 10 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • named after I.S. Turgenev, Komsomolskaya Str. 95, 302026, Orel, Russia Nanotechnology and Microsystems Department, Kalashnikov Izhevsk State Technical University, Studencheskaya 7, Izhevsk 426069, Russia Institute of Electronic Engineering and Nanotechnologies of Technical University of Moldova
PDF
Album
Full Research Paper
Published 04 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • the surface functionalization is properly selected. Keywords: atmospheric water harvesting; hydrophilicity; hydrophobicity; nanocones; nanotechnology; Introduction Despite water being abundant on Earth, there are at least four billion people suffering from water scarcity [1]. The lack of potable
PDF
Album
Full Research Paper
Published 02 Jan 2023
Other Beilstein-Institut Open Science Activities