Search results

Search for "oxidation" in Full Text gives 760 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • , carboxyl, ether, and carbonyl groups. The sheets present different levels of oxidation as well as specific structures such as edges, wrinkles, and holes. Because of its surface chemistry, GO has better water solubility than graphene; furthermore, it is straightforward to be functionalized and synthesized
  • less than 1.5 nm thickness and a flake size distribution from 18 to 308 nm. The calculated ratio between the intensity of the D (ID) and G (IG) bands of Raman is ID/IG = 0.85, indicating that the material has a high number of defects, an indirect indication of oxidation. The surface chemical
  • interacting atoms but a higher number of hydrogen–oxygen interactions. To evaluate the influence of the GO surface’s degree of oxidation on the TA adsorption, we performed MD simulations of TA interactions on periodic GO sheets with oxidation degrees ranging from 1% to 32%. The NPT trajectories were split
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • ample opportunities for future investigations despite the large number of such data already reported on ZnO materials. Mn-doped ZnO materials synthesized by SG and its derivative methods can be successfully used for photodriven oxidation processes and water depollution since they are inexpensive, not
  • toxic, and light-responsive. Up to now, advanced oxidation processes (AOPs) were used for the cleaning of waste water. Although AOPs based on engineered materials were performed in conjunction with biological treatments, the need for optimization still remains. Many photoactive semiconductors were
  • oxidation capacity of hydroxyl radicals. The subsequent decrease of the CO2 formation rate could be assigned to a presumed catalyst deactivation due to the strong adsorption of reactant/reaction products on its surface. This observation is in line with the PL measurements in oxalic acid solutions and the
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • , released in 2022) using the Andromeda search engine. Carbamidomethylation of cysteines (+57.02 Da) was set as fixed modifications, and protein N-terminal acetylation (+42.01 Da) and methionine oxidation (+15.99 Da) were set as variable modifications. Trypsin/P was set as the proteolytic enzyme, with a
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • behavior in different oxidation states. This is particularly relevant in nanoparticle chemistry, where redox reactions are common. The density of a metal is a macroscopic property that influences the mass and volume of nanoparticles. Electron affinity measures the energy change when an electron is added to
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • massive guidance in synthesizing an efficient photocatalyst for CH4 conversion under mild conditions. Keywords: photocatalysis; photocatalytic CH4 oxidation; p–n heterojunction; TiO2/SiNWs; Introduction Methane (CH4), which can take the form of liquefied natural gas, is one of the crucial sources of
  • handling [12][13][14]. Photocatalytic metal oxide semiconductor materials have been utilized for converting solar energy into valuable chemical energy in the field of CH4 conversion [15][16][17]. Methane oxidation presents a particularly promising strategy. The primary objective is to convert methane into
  • carriers prior to their participation in reactions significantly reduces the efficiency of methane oxidation reactions [23][24]. To address these issues of TiO2 nanomaterials, many scientists have developed TiO2-based nanostructure composites as advanced photocatalysts [25][26][27][28][29][30]. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • alginate matrix in which carboxyl groups of alginate were cross-linked with methacrylate and dialdehyde. They used this matrix as a sealant patch for the lungs and for the controlled delivery of soluble drugs such as DOX. The oxidation of alginate produces functional aldehyde groups, which that can form
  • results in sensing hydrogen peroxide even at very small concentrations [116]. The synergistic combination of each component’s characteristics produced a novel flexible nanocomposite with an excellent ability to detect hydrogen peroxide, which was then used to detect ʟ-lactate oxidation. The hydrogel was
  • non-enzymatic electrochemical biosensing. In enzymatic electrochemical sensors, oxidative enzymes can be immobilized in the alginate matrix [78]. Non-enzymatic sensors for glucose rely on the direct electrochemical oxidation of glucose. Materials for both enzymatic and non-enzymatic glucose biosensors
PDF
Album
Review
Published 22 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • oxygen functionalities (hydroxy, epoxy, carbonyl, and carboxylic groups) arranged according to the Lerf–Klinowski model [45]. GO is generally produced through chemical oxidation and exfoliation of graphite flakes with different protocols to tune the oxygen content [46][47]. The defective structure of GO
PDF
Album
Review
Published 16 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • interact favourably with the water solvent, the interactions are much stronger for the Pt NPs compared to the Au NPs. Therefore, the expected structural modifications and potential partial oxidation in the Pt case are going to be stronger than in the Au case. Although partial oxidation can be addressed
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • removed from the termini of iron octahedra in the secondary building units (SBUs) through an activated-thermal process in a vacuum-controlled environment [9][10]. Notably, density and oxidation states of the formed unsaturated Fe sites (Fe(II) and Fe(III)) are temperature-dependent, influencing the
  • environment. In contrast to metallic iron and iron salts, iron oxides are acknowledged for their easy storage and abundant availability in raw materials derived from natural iron oxidation processes and steelmaking industry waste [29][30]. These characteristics play a crucial role in the selection of
  • the reference sample MIL-100(Fe), the mass percentages of Fe2O3 reactant were inferred to be 35.8%, 15.2%, and 6.6%, corresponding to conversion rates of 36.7%, 59.6%, and 81% for M-100Fe@Fe2O3#0.90, M-100Fe@Fe2O3#1.35, and M-100Fe@Fe2O3#1.80 samples, respectively. Figure 7 displays the oxidation
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • , during electron beam exposure, successful purification of the deposited material occurs only if the deposited metal is inherently resistant to oxidation, such as Au, Pt, and Ru [34]. In the case of iron [35], the removal of carbon is accompanied by a large incorporation of oxygen in the deposit
  • intermediate step in the production of CO. These findings could be extended to purification during deposition for cases in which, in a first step, PtCx is deposited, and, in a second step, the carbon from the partially dissociated parent molecules is removed by oxidation (Figure 1, pathway A1, A2). However, a
  • limited quantities throughout the patterned area and the halo region. Point EDX performed in the centre of the structure gave a Pt content of 64.1 atom % and a C/Pt atom % ratio of 0.23. Only 2.2 atom % oxygen is incorporated in the deposit, indicating no serious oxidation of the deposited Pt. The
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • material, such as oxidation state, formal charge [8][16][20][23], softness [22], ionization potential [22], and weight percentage of the metal [23]. Furthermore, to include information regarding the particular nanoform, the crystal structure can be included as a categorical descriptor [24] or by using
  • its interaction with other substances, as for example using the maximum salt concentration in the medium with no significant coagulation or the rate constant of its oxidation by hydrogen peroxide [68]. It should be noted that the use of experimental descriptors can be exclusive, and there are models
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • ascribed to W–O bonding [31]. This suggests the presence of minor oxidation of the flakes. Further quantitative analysis of XPS data indicates the following atomic compositions: Mo: 34.68%, S: 65.32%, W: 33.98%, S: 66.02%, and Mo: 14.06%, W: 23.70, S: 62.24%, respectively for MoS2, WS2, and MoS2/WS2
  • Langmuir–Hinshelwood kinetics model, expressed by the following equation: The PD reaction rate constant, k, is the slope of Figure 7a. By plotting −ln(Ct/Co) as a function of t, it was observed that the oxidation of MB using the photocatalyst was well-fitted with the pseudo first-order reaction kinetics
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • ][12][13][14]. Researchers are exploring innovative approaches, such as advanced oxidation processes, nanotechnology-based methods, and biological treatment systems, which show promise in effectively removing pollutants from wastewater [14][15][16]. In this research, we focus on the synthesis of carbon
  • (Figure 1b and Figure 1c) present a relatively symmetrical band also centered at 350 nm with a higher intensity for sample M6. Both samples were prepared using an oxidation process with nitric acid prior to the hydrothermal treatment to break the structure of the carbohydrate used. On the other hand
  • , samples M5 and M8 exhibit an asymmetric behavior in their absorption band centered around 340 nm. The difference can be associated with the polydispersity of the CQDs due to the absence of acid oxidation processes. In this case, the hydrothermal treatment is solely responsible for the formation of CQDs
PDF
Album
Full Research Paper
Published 25 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • compared to healthy individuals is related to Parkinson’s disease [4]. The oxidation of HYP yields xanthine, which can be further oxidized to URI. Meat from shrimp, fish, and some other animals contain large amounts of HYP. High consumption of these foods has been considered to result in elevated levels of
  • voltammetric (CV) behaviors of different electrodes are presented in Figure 5a. The CV curve of the bare GCE shows broad and weak anodic peaks of URI and HYP oxidation. The electrochemical signals are significantly enhanced when the electrode is modified with TiO2/GQDs. A well-defined oxidation peak appears at
  • 0.45 V for URI and at 1.26 V for HYP at the TiO2/GQDs-GCE. It is notable that the electrochemical response is a function of the TiO2/GQDs composition (Figure 5b). The oxidation peak currents of URI and HYP increase with increasing amount of GQDs in TiO2/GQDs. However, the peak current of URI reaches
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • colourless. This is due to the change in the oxidation state of gold ions. Finally, 25 μL of the seeds prepared in Step 1 was added to their respective surfactant growth solutions and was left undisturbed for 15 min. The colour of the samples appeared blue indicating the formation of anisotropic gold
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • accessibility and, thereby, slowing down oxidation, providing conductivity via carbon shells, or providing steric stability against aggregation. Regardless of the liquid medium, the LSPC variants have process-specific characteristics, mainly classified by the product but also by the starting material. LAL, LFL
  • nuclear reactions such as the (alpha) decay of uranium in the proximity of Au nanoparticles [40][41]. This LSPC process variant has also been called pulsed laser photoreduction/-oxidation in liquids (LPL) [42], and LRL has recently been reviewed by the Tibbetts group emphasizing the involved redox
  • [36]. Depending on the process, gas formation can be attributed to different redox reactions that contribute to nanoparticle formation. For the laser ablation, fragmentation, and melting processes, the nanoparticles are found to be at least partially oxidized, ranging from a surface oxidation of 5–10
PDF
Album
Review
Published 05 Jun 2024

Exfoliation of titanium nitride using a non-thermal plasma process

  • Priscila Jussiane Zambiazi,
  • Dolores Ribeiro Ricci Lazar,
  • Larissa Otubo,
  • Rodrigo Fernando Brambilla de Souza,
  • Almir Oliveira Neto and
  • Cecilia Chaves Guedes-Silva

Beilstein J. Nanotechnol. 2024, 15, 631–637, doi:10.3762/bjnano.15.53

Graphical Abstract
  • , possibly due to surface oxidation of the powder. This observation can explain the presence of the 340 cm−1 peak, indicative of anatase formation. Additionally, the Raman spectra reveal vibrations resulting from nitrogen and titanium deficiencies within the TiN structure. Specifically, the peak at 253 cm−1
PDF
Album
Letter
Published 31 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • fabrication of iron nanostructures with optimum performance. Post-deposition purification approaches relying on O2 or H2O are not appropriate for iron deposits because they lead to oxidation [8]. The further improvement of iron deposition can, however, be tackled by rational design of the precursor molecules
  • -induced crosslinking reactions that have previously been observed for the closely related compound methyl methacrylate (MMA) [50]. Alternatively, the electron-induced fragmentation of MA may yield small and volatile products, including atomic H that, in turn, could potentially counteract oxidation of the
  • ligand is decomposed at a slower rate as compared to the cleavage of CO from the complex. Again, the lack of m/z 55 and 56 in ESD shows that MA or the precursor itself do not desorb, while the negligible m/z 44 signal also rules out formation and immediate desorption of CO2 as an oxidation product of CO
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • in vacuum, as shown in Figure 5b. As it has been shown previously, the oxygen vacancy defects in nanocomposite materials can act as active centers during photocatalytic oxidation processes by capturing photoinduced electrons, thus contributing to a substantial improvement of photocatalytic activity
PDF
Album
Full Research Paper
Published 02 May 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • insulating interlayers. The main specific feature of these structures is the intentional oxidation of both superconductor/ferromagnet (S/F) interfaces. We study the variation of the critical temperature of our systems due to switching between parallel and antiparallel configurations of the magnetizations of
  • demonstrated by Deutscher and Meunier in 1969 [40]. The idea behind the oxidation of the FeNi and Ni layers was to slightly weaken the S/F proximity effect such that the superconductivity in the In layer could not be completely destroyed by the exchange field of the F layers. The authors noted that the thin
  • for 60 s. It was shown in [43] that significant partial oxidation of a few nanometers thin metallic Co layer can be achieved by exposing it to the ambient atmospheric environment, implying that lowering the atmospheric pressure by five orders of magnitude enables one to oxidize only the surface
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • employ the properties of transition metals and metal oxides (e.g., cobalt, iron, cerium, and gold), which can generate a cycle of reduction and oxidation stages [20][21][22][23]. Among these metal oxides, cerium oxide-based nanomaterials have been deeply studied with regard to the mechanisms of CAT
  • Gao’s group [37]. The Michaelis–Menten constant (Km) and maximum initial velocity (Vmax) values showed that copper-doped hollow carbon spheres had an eightfold higher CAT-like activity than pure carbon nanozymes. The oxidation state of copper may play a more important role regarding CAT-like activity
  • , H2O2 and O2•–. Chain-breaking metal-based nanoantioxidants Chain-breaking antioxidants slow down or stop oxidation reactions after they begin. Chain-breaking antioxidants can directly trap, scavenge, or convert ROS into more stable and nonradical products and, thus, compete with the propagation
PDF
Album
Review
Published 12 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • , bandgap, and electrical conductivity, to a large extent by controlling the cationic oxidation state and the film stoichiometry [2]. As a matter of fact, adjustments in the film stoichiometry and microstructure are experimentally viable by the choice of a suitable growth technique [9][10][11]. As a result
  • at 34.78 and 36.92 eV can be designated to 4f7/2 and 4f5/2 levels of the W5+ oxidation state [40]. Similarly, the presence of W6+ and W5+ is observed in the annealed WOx films, where the W 4f7/2 and W 4f5/2 peaks corresponding to the W6+ state are found at slightly smaller binding energies (35.82 and
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024
Graphical Abstract
  • ability of the developed model as it passes various statistical criteria [34]. The descriptors depicted in the model also interpret the influence of the zeta potential as discussed below. The descriptor “χox” pertains to the oxidation number of the metal, which represents the hypothetical charges within
  • an atom. The zeta potential decreases as the oxidation number increases, as indicated by the negative coefficient of the descriptor. A lower (negative) oxidation number indicates a higher electronegativity of the metal, which determines the electron distribution in a molecule. The metal’s
  • stability based on the aggregation phenomenon. This is well observed in MeOx NPs, where an increase in the oxidation number (χox) decreases the zeta potential. In WO3 NPs, the χox value is 6 and the zeta potential value is −23 mV; for NiO NPs, the χox value is 2, and the zeta potential value is 34.4 mV. The
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • of science and engineering. However, production of ultrathin PAAO membranes with precise thickness in the optical sub-wavelength range remains challenging because of difficulties regarding process control at the initial stage of anodic oxidation. In this study, we demonstrate a technique for
PDF
Album
Full Research Paper
Published 31 Jan 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • constituents from oxidation, in addition to promoting better sensorial properties [13]. Moreover, the development of aqueous nanoemulsions would enable a better dispersion of vector control agents, inducing a controlled release and a possibly higher effectiveness in eliminating immature stages of mosquitoes
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024
Other Beilstein-Institut Open Science Activities