Search results

Search for "photocatalysts" in Full Text gives 113 result(s) in Beilstein Journal of Nanotechnology.

Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures

  • Suneel Kumar,
  • Rahul Sharma,
  • Vipul Sharma,
  • Gurunarayanan Harith,
  • Vaidyanathan Sivakumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2016, 7, 1684–1697, doi:10.3762/bjnano.7.161

Graphical Abstract
  • the photocatalysts. In this work, we have investigated the role of reduced graphene oxide (RGO) support and the irradiation source on mixed metal chalcogenide semiconductor (CdS–ZnO) nanostructures. The photocatalyst material was synthesized using a facile hydrothermal method and thoroughly
  • photocatalytic decomposition of organic pollutants [4][5][6][7][8]. These semiconductor photocatalysts not only degrade the contaminants, but also cause their complete mineralization into CO2, H2O and mineral acids [9][10]. Thus, it is advantageous over physico-chemical methods such as flocculation–coagulation
  • radiation [17]. Due to this high band gap value, ZnO can only absorb ultraviolet (UV) light and this limits its practical applications [18]. Thus, in order to design more efficient photocatalysts, which are active in visible light, many research groups have devoted their studies towards dye sensitization
PDF
Album
Full Research Paper
Published 11 Nov 2016

High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis

  • Bilel Chouchene,
  • Tahar Ben Chaabane,
  • Lavinia Balan,
  • Emilien Girot,
  • Kevin Mozet,
  • Ghouti Medjahdi and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2016, 7, 1338–1349, doi:10.3762/bjnano.7.125

Graphical Abstract
  • been developed and their ability to degrade cyanide anions [28] or organic dyes [29][30][31][32][33] like methylene blue or methyl-orange has been demonstrated. The preparation of Ce–Cu, Ce–Pd or Ce–Ag co-doped photocatalysts to enhance the solar or the visible light catalytic response was also
  • solvothermal method. Ce-doping not only increases the surface area of photocatalysts but also induces a red-shift in the absorption and improves solar and visible light capacities. At the optimal Ce doping percentage of 5 mol %, Orange II degradation is complete in 80 min. under solar light irradiation and the
  • good stability and can reused at least seven times, thus indicating that these materials have great potential as photocatalysts in practical applications. Experimental Materials Zn(OAc)2·2H2O (>98%, Sigma), anhydrous Ce2(SO4)3 (97%, Sigma), Orange II sodium salt (>85%, Sigma), sodium hydroxide (>97
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2016

Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

  • Tianyu Xiang,
  • Feng Xin,
  • Jingshuai Chen,
  • Yuwen Wang,
  • Xiaohong Yin and
  • Xiao Shao

Beilstein J. Nanotechnol. 2016, 7, 776–783, doi:10.3762/bjnano.7.69

Graphical Abstract
  • Engineering, Tianjin University of Technology, Tianjin 300384, China 10.3762/bjnano.7.69 Abstract A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained
  • photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation
  • SiC), producing CH3OH, HCOOH, HCHO and trace amounts of CH4. In the 1990s, Ta oxide photocatalysts began to draw attention in the field of water splitting. A series of Ta catalysts, such as LiTaO3 [9], NaTaO3 [10], KTaO3 [11], AgTaO3 [12], CaTa2O6 [13], SrTa2O6 [13], KBa2Ta3O10 [14], were proved to
PDF
Album
Full Research Paper
Published 01 Jun 2016

Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

  • Hoai Nga Le,
  • Frank Babick,
  • Klaus Kühn,
  • Minh Tan Nguyen,
  • Michael Stintz and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2015, 6, 2423–2430, doi:10.3762/bjnano.6.250

Graphical Abstract
  • promising photocatalyst because of its commercial availability, chemical and biological inertness, and because it has no known adverse health effects on humans [5][6]. Due to its large active surface area, the suspended TiO2 powder is favored [6]. Most slurry photocatalysts have been implemented in
  • illuminated batch reactors [6][7][8] and follow Langmuir–Hinshelwood kinetics [9][10]. This research has focused on the materials aspects such as the structural properties (e.g., surface area, particle size, crystal composition, porosity) [8][11] of pristine or modified photocatalysts [2][5][12]. However
  • of fine, primary particles (as a result of the larger surface area) has been investigated [4][16][17][18], the behavior and properties of the aggregates is not well understood. This paper shows an engineering approach to study the aggregation in photocatalysts. The first part presents the
PDF
Album
Supp Info
Full Research Paper
Published 17 Dec 2015

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • can result in less energy and raw material consumption, and also less waste generation [118]. For example, polyoxometalates (POMs) can act as a photocatalysts in the synthesis of metallic NPs so that the reactions can take place at room temperature within several minutes [134]. Degradability: Chemical
PDF
Album
Review
Published 10 Dec 2015

Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

  • Jacek Wojnarowicz,
  • Sylwia Kusnieruk,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka,
  • Witold Lojkowski,
  • Wojciech Knoff,
  • Malgorzata I. Lukasiewicz,
  • Bartlomiej S. Witkowski,
  • Anna Wolska,
  • Marcin T. Klepka,
  • Tomasz Story and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2015, 6, 1957–1969, doi:10.3762/bjnano.6.200

Graphical Abstract
  • attractive material with a wide range of applications such as: transparent transistors based on semiconducting transparent oxides [4], ultraviolet (UV) light blockers [5], photocatalysts [6] or antibacterial uses [7]. The energy band gap of ZnO is ≈3.3 eV at room temperature, corresponding to a wavelength of
PDF
Album
Full Research Paper
Published 30 Sep 2015

High photocatalytic activity of V-doped SrTiO3 porous nanofibers produced from a combined electrospinning and thermal diffusion process

  • Panpan Jing,
  • Wei Lan,
  • Qing Su and
  • Erqing Xie

Beilstein J. Nanotechnol. 2015, 6, 1281–1286, doi:10.3762/bjnano.6.132

Graphical Abstract
  • , chemical fertilizers and phenol [4]. Fortunately, a new and eco-friendly photocatalysis technique has drawn much attention. Photocatalysts are capable of accelerating the oxidation and mineralization of such organic substances with a fast removal rate [5][6] by producing strongly reactive and nonselective
  • metal ions [8][9][10][11], such as Ti4+, Zr4+, Ta5+, Nb5+ and V5+, as well as the development of new photocatalysts. Strontium titanate (SrTiO3), an important multifunctional semiconductor, has been applied in photocatalysis technology for water splitting and organic contaminant degradation [12][13
  • excellent photocatalytic properties of Fe-doped SrTiO3, Nd-doped SrTiO3 and Ni/La co-doped SrTiO3 [18][19][20]. These new photocatalysts enable a good response to light or overcome light corrosion caused by the excessive accumulation of photogenerated carriers due to poor conductivity. However, there are
PDF
Album
Letter
Published 09 Jun 2015

Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

  • Sini Kuriakose,
  • D. K. Avasthi and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2015, 6, 928–937, doi:10.3762/bjnano.6.96

Graphical Abstract
  • ], biosensors [22] and photocatalysts [23][24][25]. Nanocomposites consisting of nanostructures of ZnO and other metal-oxide semiconductors are being widely studied due to their improved physicochemical properties as compared to the individual counterparts. CuO, a p-type narrow band gap semiconductor, is
  • optimize the photocatalytic activity of ZnO–CuO nanocomposites. Figure 6 and Figure 7 show the UV–visible absorption spectra of 3.7 μM MB and MO dyes with the pristine and ion-irradiated nanocomposite samples as photocatalysts upon irradiation with sun light for different periods of time. The
  • irradiation can be used to controllably engineer the shape of ZnO nanostructures (nanorods and nanosheets) and enhance the photocatalytic activity of ZnO–CuO nanocomposites, improving their applicability as reusable photocatalysts. Conclusion ZnO–CuO nanocomposite thin films were prepared by carbothermal
PDF
Album
Full Research Paper
Published 10 Apr 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • studies in the literature in which pyrochlore-type compounds with high photocatalytic activity are used as a photocatalysts, such as Bi2Ti2O7 [9][10], Pb2Nb2O7 [11]; other pyrochlore compounds that have been evaluated are rare earths, such as Gd2BiSbO7 [12] or Ln2Ti2O7 (Ln = Nd, Gd, Er) [13]. In this
PDF
Album
Full Research Paper
Published 02 Mar 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • Lumpur, Malaysia 10.3762/bjnano.6.43 Abstract Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through
  • with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was
  • reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance. Keywords: endocrine disrupting compound
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • conjugation to Ag nanoparticles when combined to form Ag@Fe3O4 dumbbell-like hetero-nanoparticles [47]. Moreover, plasmonic photocatalysts combine two prominent features: a Schottky junction enhancing charge separation and surface plasmon resonance, which is responsible for strong absorption of visible light
  • nanoparticles is shifted to more negative potentials, thus, enabling the engineering of the Fermi level of photocatalysts dependent on the size of the conjugated metal domain [49]. Recently, Au@TiO2 Janus particles were proven useful for visible-light hydrogen generation due to the strong coupling of plasmons
PDF
Album
Review
Published 05 Dec 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • , antibacterial coatings, photocatalysts, and implants [13][14][15][16][17][18]. The different properties of metal–TiO2 nanocomposites mainly depend on the metal volume filling fraction and the stoichiometry of the matrix. Generally, once the nanocomposites are prepared their properties are fixed. It is therefore
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Characterization and photocatalytic study of tantalum oxide nanoparticles prepared by the hydrolysis of tantalum oxo-ethoxide Ta83-O)2(μ-O)8(μ-OEt)6(OEt)14

  • Subia Ambreen,
  • N D Pandey,
  • Peter Mayer and
  • Ashutosh Pandey

Beilstein J. Nanotechnol. 2014, 5, 1082–1090, doi:10.3762/bjnano.5.121

Graphical Abstract
  • , 0.8 mg/mL and 1.1 mg/mL) of Ta2O5 nanoparticles as photocatalysts were taken in 50 mL of distilled water and sonicated for 5 min. Then 12.5 ppm of rhodamine B was added to it. To attain an adsorption–desorption equilibrium between the dye molecules and the catalyst surface, the solution was stirred
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2014

Photocatalysis

  • Rong Xu

Beilstein J. Nanotechnol. 2014, 5, 1071–1072, doi:10.3762/bjnano.5.119

Graphical Abstract
  • its early stage, and many technological challenges must be solved before it can be applied to large-scale. It has been widely recognized that it is necessary to develop advanced materials and new molecules assembled preferably from earth abundant elements as efficient photocatalysts to accomplish the
  • , two review articles present an excellent overview of the significance of nanostructures in visible light photocatalysis in a timely manner. Many materials aspects of photocatalysts influence the photocatalytic performance, such as the electronic, structural, and morphological features of the
  • dots integrated with TiO2 nanotube arrays, and carbon nitride, have been explored to construct photocatalysts with enhanced performances. On the other hand, molecular catalysts have an advantage in design flexibility and structural tunability. A contribution based on the investigation of molecular
PDF
Editorial
Published 16 Jul 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • : visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more
  • the semiconductors [8]. The band gap of semiconductor photocatalysts must be larger than the potential of water electrolysis to meet the energetic requirement for overall water splitting (1.23 eV, corresponding to an absorption threshold of 1000 nm). In particular, the bottom level of the conduction
  • band (CB) must be more negative than the reduction potential of water, while the top level of the valance band (VB) should be more positive than the oxidation potential of water. In order to utilize the abundant visible light from the sun, the band gap of photocatalysts has to be less than 3.0 eV
PDF
Album
Review
Published 09 Jul 2014

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

  • Weiying Zhang,
  • Yuexiang Li,
  • Shaoqin Peng and
  • Xiang Cai

Beilstein J. Nanotechnol. 2014, 5, 801–811, doi:10.3762/bjnano.5.92

Graphical Abstract
  • ; graphene oxide; H2 evolution; photocatalysis; photoreduction; sp2 conjugated domains; Introduction Hydrogen is an efficient and green energy carrier. Photocatalytic water splitting into hydrogen by means of solar energy and semiconductor photocatalysts is a environmentally friendly way to produce storable
  • energy [1][2][3][4]. In order to enhance the activity of photocatalysts for hydrogen evolution, various graphene-based composite photocatalysts, such as graphene/TiO2 composite and graphene/ZnO composite, have recently been reported [5][6][7][8]. Kim et al. [8] have reported that two graphene/TiO2
  • under visible light irradiation. Eosin Y (EY), a xanthene dye, is a very good sensitizer [13][14][15][16][17][18]. EY has been used to sensitize various matrixes such as TiO2 [13], Na2Ti2O4(OH)2 nanotubes [14], g-C3N4 [15], and α-[AlSiW11(H2O)O39]5− [18], and the sensitized photocatalysts are
PDF
Album
Full Research Paper
Published 06 Jun 2014

Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

  • Hua Bing Tao,
  • Hong Bin Yang,
  • Jiazang Chen,
  • Jianwei Miao and
  • Bin Liu

Beilstein J. Nanotechnol. 2014, 5, 770–777, doi:10.3762/bjnano.5.89

Graphical Abstract
  • ascribed to the efficient separation of photoexcited charge carriers across the heterojunction interface. The strategy of designing and preparing CN/CNS heterojunction photocatalysts in this work can open up new directions for the construction of all CN-based heterojunction photocatalysts. Keywords
  • [11]. Numerous CN-based heterojunctions have been constructed by coupling CN with various types of photocatalysts, e.g., oxides and chalcogenides, which have shown improved photocatalytic performances [12][13][14][15][16][17][18]. However, the formation of interfacial defects at the CN/photocatalyst
  • photoelectrochemical performance, which is attributed to the efficient separation of photoexcited charge carriers across the heterojunction interface. The strategy of designing and preparing CN/CNS heterojunction photocatalysts in this work can open up new directions for the construction of all CN-based heterojunction
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2014

Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

  • Johannes Tucher and
  • Carsten Streb

Beilstein J. Nanotechnol. 2014, 5, 711–716, doi:10.3762/bjnano.5.83

Graphical Abstract
  • photocatalysts is a well-established method which gives access to materials for which light absorption, catalytic activity and selectivity can be tuned by structural and chemical modifications [1][2][3][4][5][6]. Prime examples for this approach are molecular metal oxides, so-called polyoxometalates (POMs) [7][8
  • previous work with direct relevance to this report, we showed that POM chemistry can be inspired by solid-state photocatalysts when the first molecular analogue of bismuth vanadate (BiVO4) photocatalysts was obtained [33][34][35][36]. Bismuth vanadate is one of the best-known solid-state visible light
  • photocatalysts and is employed in photochemical and photoelectrochemical visible-light-driven water splitting systems [37][38][39][40][41]. At the start of our studies, no molecular bismuth vanadium oxides were known in the literature. We thus developed a synthetic approach to bismuth vanadate clusters based on
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as
  • quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent
  • semiconductor photocatalysts have received significant attention. Up to now, more than 100 photocatalysts have been developed [5][6]. However, most of the photocatalysts under investigation are wide-bandgap transition metal oxides and only active under ultraviolet (UV) light. To be of practical use for
PDF
Album
Review
Published 23 May 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • Donald K. L. Chan Po Ling Cheung Jimmy C. Yu Department of Chemistry and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 10.3762/bjnano.5.81 Abstract TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The
  • ][2]. Among various photocatalysts, nanostructured titanium dioxide (TiO2) is the most widely used because of its high activity, long-term stability and low production cost [3][4]. However, pure TiO2 is not efficient for solar-driven applications because it requires UV excitation [5]. Belonging to one
  • attention due to its large specific area, high intrinsic electron mobility and good electrical conductivity [3]. As an excellent electron acceptor, graphene has been combined with semiconductor photocatalysts such as TiO2 [25], ZnO [26] and CdS [27] to enhance their photocatalytic activities. However
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014

Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag2CrO4

  • Difa Xu,
  • Shaowen Cao,
  • Jinfeng Zhang,
  • Bei Cheng and
  • Jiaguo Yu

Beilstein J. Nanotechnol. 2014, 5, 658–666, doi:10.3762/bjnano.5.77

Graphical Abstract
  • 10.3762/bjnano.5.77 Abstract Silver chromate (Ag2CrO4) photocatalysts are prepared by microemulsion, precipitation, and hydrothermal methods, in order to investigate the effect of preparation methods on the structure and the visible-light photocatalytic activity. It is found that the photocatalytic
  • photocatalysts during the past decades. TiO2 is most widely studied because of its low cost, non-toxicity, high efficiency and long-time photostability [6][7][8][9][10][11]. However, due to its large band gap of about 3.2 eV, TiO2 is only active in the ultraviolet (UV) region that corresponds to 3–4% of the
  • solar light. Therefore, the development of visible-light-driven photocatalysts has received considerable attention as visible light (400–800 nm) is abundant in the solar spectrum [12][13][14][15][16]. Some semiconductors such as BiVO4 [17][18][19], Bi2O3 [20][21], Fe2O3 [22][23][24][25], and Cu2O [26
PDF
Album
Full Research Paper
Published 19 May 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • including UV lasers [1], field effect transistors [2], dye sensitized solar cells [3][4], surface enhanced Raman spectroscopy (SERS) [5] and biomedical applications [6][7][8][9][10]. ZnO nanostructures are promising photocatalysts because of their high quantum efficiency, high redox potential, superior
  • on the effects of trisodium citrate on the shape evolution of ZnO nanostructures will be reported elsewhere. Photocatalytic studies Figure 7 shows the UV–visible absorption spectra of 10 μM MB aqueous solutions with different photocatalysts AZ210, AZ310, AZ410 and AZ510 following the irradiation with
  • photocatalysts under sun-light exposure. Figure 9a,b show the kinetics of MB degradation for photocatalysts with different Ag nanoparticles loading by using different [Ag+]/[citrate] ratios 1:1 and 1:10. It can be seen that pristine ZnO nanostructures degraded only 52% of MB following 20 min of sun-light
PDF
Album
Full Research Paper
Published 15 May 2014

High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

  • Leny Yuliati,
  • Melody Kimi and
  • Mustaffa Shamsuddin

Beilstein J. Nanotechnol. 2014, 5, 587–595, doi:10.3762/bjnano.5.69

Graphical Abstract
  • -University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia 10.3762/bjnano.5.69 Abstract Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic
  • the most abundant energy. The conversion of solar energy to chemical energy by photocatalytic processes, such as photocatalytic water reduction in the presence of semiconductor photocatalysts, would be an opportunity to produce clean hydrogen energy. Recently, special attention has been paid to the
  • use of visible light-driven photocatalysts [1][2][3][4]. One of the promising photocatalysts is Cd1−xZnxS solid solution [5][6][7][8]. The successful formation of a solid solution of ZnS and CdS resulted in an absorption shift of ZnS to the visible-light range, while maintaining the high conduction
PDF
Album
Full Research Paper
Published 07 May 2014

Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

  • Van-Huy Nguyen,
  • Shawn D. Lin,
  • Jeffrey Chi-Sheng Wu and
  • Hsunling Bai

Beilstein J. Nanotechnol. 2014, 5, 566–576, doi:10.3762/bjnano.5.67

Graphical Abstract
  • mild conditions attracts much attention. Differently designed photocatalysts were examined [17][18][19][20][21][22][23][24], and the reaction conditions such as reaction temperature [18], light irradiation [25][26] and oxygen/propylene ratio [23][27] were also tested. Yoshida and co-workers reported
  • K·min−1. Due to the small amount of catalyst used for the reaction, the spent is a mixture of all the photocatalysts after reaction. Photocatalytic epoxidation of propylene The apparatus for carrying out the photocatalytic epoxidation of propylene with a reactant gas mixture of C3H6/O2/N2 = 1:1:16 at
PDF
Album
Full Research Paper
Published 05 May 2014

Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

  • Subas K. Muduli,
  • Songling Wang,
  • Shi Chen,
  • Chin Fan Ng,
  • Cheng Hon Alfred Huan,
  • Tze Chien Sum and
  • Han Sen Soo

Beilstein J. Nanotechnol. 2014, 5, 517–523, doi:10.3762/bjnano.5.60

Graphical Abstract
  • , and solar thermal dissociation of water and CO2 [14][15][16][17][18]. Cerium oxides with oxygen vacancies represent an underexplored area of nanotechnology with the potential to provide visible-light absorbing photocatalysts [13][19][20][21]. Cerium is relatively earth-abundant and the oxides
PDF
Album
Supp Info
Letter
Published 24 Apr 2014
Other Beilstein-Institut Open Science Activities