Search results

Search for "plasmon" in Full Text gives 295 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Formation of metal/semiconductor Cu–Si composite nanostructures

  • Natalya V. Yumozhapova,
  • Andrey V. Nomoev,
  • Vyacheslav V. Syzrantsev and
  • Erzhena C. Khartaeva

Beilstein J. Nanotechnol. 2019, 10, 2497–2504, doi:10.3762/bjnano.10.240

Graphical Abstract
  • [10], or can even consist of three layers [11][12]. These variations can be useful for practical applications, e.g., for enhancing the absorption capacity of particles or for plasmon–exciton interaction [13]. The presence of an inorganic shell on a metal particle often leads to a significant
PDF
Album
Full Research Paper
Published 13 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • chemical (CM) [5] and electromagnetic enhancement (EM) [6][7]. The CM enhancement is the main factor for charge transfer between the SERS substrate and probe molecule. The EM field enhancement is the main factor for localized surface plasmon resonance (LSPR) and significantly depends on the induced near
PDF
Album
Full Research Paper
Published 13 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • conductive network [14][15][16]. Ag NWs are a promising material for flexible transparent electrodes [17]. Plasmon propagation and the optical properties of Ag and Au NWs make them attractive for nanophotonics as waveguides for visible light [18][19][20][21][22][23]. In all these applications, NWs may
  • curved pathways for electromagnetic radiation. Any crack or other discontinuities that are introduced by bending can prevent plasmon propagation in the NW [19]. Pure bending conditions are realized in the cantilever beam bending configuration where the NW is fixed at one end and the free end is pushed by
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators

  • Xiao bin Ren,
  • Kun Ren,
  • Ying Zhang,
  • Cheng guo Ming and
  • Qun Han

Beilstein J. Nanotechnol. 2019, 10, 2459–2467, doi:10.3762/bjnano.10.236

Graphical Abstract
  • new opportunities to design on-chip optical devices with great tuning performance. Keywords: multiple Fano resonance; off-centered ring resonators; plasmonic waveguide; surface plasmon polaritons; symmetry-breaking; tunable resonance; Introduction Fano resonances originate from the interference of a
  • reflectance). In addition to PhC waveguides, metal–dielectric–metal (MDM) waveguides are very attractive for researchers because they can support surface plasmon polaritons (SPPs) and allow for the control of light at the subwavelength scale. MDM waveguides provide an effective approach to chip-scale photonic
PDF
Album
Full Research Paper
Published 11 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • surface of the AgNPs. Therefore, the observed blue shift and damping of the surface plasmon resonance (SPR) peak, which is observed only after the formation of Ag+ adions, indicates an electronic contact between the AgNPs and citrate (Figure 1B) [28][29][30]. No SERS spectra of citrate were obtained at pH
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • properties of plasmonic nanostructures differ significantly from those of the corresponding bulk materials, mainly because of two reasons, i.e., the enhancement in the surface-to-volume ratio and the appearance of resonance effects such as surface plasmon resonance (SPR). For example, the color, or more
  • plasmonic nanostructures [4][5][6]. The potential applications of nonlinear nanoplasmonics include nanolasers [7], nanoantennas [8], surface plasmon polariton (SPP)-based waveguides [9], nanostructure-based optical limiters [10], nanoscopy instruments [11][12], and nanoelectronics as integrated optical
PDF
Album
Full Research Paper
Published 06 Nov 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • confirms the formation of spherical particles for all three sizes. The surface plasmon resonance depends on the shape and the size of the NPs. For instance, ellipsoid shapes with three different axes have three different dipole modes. When the size of the spherical AuNPs increases, their SPR does not red
  • functionalization of Au-CPMV. The localized surface plasmon resonance (LSPR) spectrum shifted by almost 4 nm (Figure 3A). This shift of the extinction maximum from 534 nm to 538 nm is a result of an increase in the local refractive index at the Au-CPMV surface as reported in the literature following surface
PDF
Album
Full Research Paper
Published 07 Oct 2019

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • -isopropylacrylamide (NIPAM) and acrylic acid (AAc). The hydrogel cores were then encased within either a porous or complete silver shell for which the localized surface plasmon resonance (LSPR) extends from visible to near-infrared (NIR) wavelengths (i.e., λmax varies from 550 to 1050 nm, depending on the porosity
  • increased, water was expelled from the particle, causing the core to collapse and leading to a smaller size. Thermochromic effects in the particles can be detected by examining the extinction maximum shift from 550 to ≈600 nm, corresponding to the plasmon band of the THPC gold seeds. The red-shift observed
  • broadening of the spectra is likely the result of several contributing factors, such as polydispersity of the hydrogel core particles, capsule roughness, variable capsule thicknesses, and/or overlap of multipole surface plasmon resonances. The contribution from overlapping multipole surface plasmon
PDF
Album
Full Research Paper
Published 04 Oct 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • –reactor; catalysis; heterostructures; laser ablation; multicomponent; nanoparticles; 4-nitrophenol; plasmonic; Pt; Rh; Introduction Metal nanoparticles can interact with visible light through an excitation of the localized surface plasmon resonance (LSPR). The LSPR is a resonant, collective oscillation
  • of the free electrons of the metal that occurs when the dielectric constants of the metal and the medium (through which the free electrons oscillate) are appropriately matched and the wavelength of the incident light is longer than the size of the nanoparticle (NP). A consequence of plasmon
  • plasmon decay for monometallic Ag. However, after Pt deposition the primary pathway for plasmon decay changed to absorption, indicating the thin Pt layer provided an alternate pathway for the dissipation of energy. Combined with electrodynamic simulations of spatial distributions of LSPR energy
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

The influence of porosity on nanoparticle formation in hierarchical aluminophosphates

  • Matthew E. Potter,
  • Lauren N. Riley,
  • Alice E. Oakley,
  • Panashe M. Mhembere,
  • June Callison and
  • Robert Raja

Beilstein J. Nanotechnol. 2019, 10, 1952–1957, doi:10.3762/bjnano.10.191

Graphical Abstract
  • techniques were used to explore the nature of the Au species. UV–vis measurements show signals attributed to localised surface plasmon resonance for both Au/MP-SAPO-5 (Figure S8, Supporting Information File 1) and Au/HP-SAPO-5 (Figure S9, Supporting Information File 1) systems suggesting that nanoparticles
PDF
Album
Supp Info
Letter
Published 25 Sep 2019

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • mass percentages of gold were also tested (1–3 wt %). At the end of the annealing, the films became reddish. The optical transmission was measured showing a plasmon resonance near 530 nm (data not shown). On the basis of these experiments, in order to achieve AuNP synthesis within reasonable time, 2
  • angle θi was set to −20°. The wavelength was set to λ = 570 ± 10 nm, slightly off-resonance with the plasmon excitation at ca. 530 nm. The results are presented in Figure 3 on a logarithmic scale. Forward scattering and backscattering correspond, respectively, to the left and right parts of the circular
  • the refractive index. As the operating wavelength of the ellipsometer is off-resonance with respect to the localized plasmon wavelength (λSPR ≃ 530 nm) and the volume fraction of gold in the sample is low (fAu < 0.20%), the extinction coefficient of the film can be assumed to be small and therefore
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • its semi-metal bandgap structure and high anisotropy. In addition to angle-dependent photodetectors, its angle-resolved photoelectric properties may permit the development of plasmonic devices in which the surface plasmon polariton frequency has a highly directional dependence on the wave vector
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • diffraction peak at 2θ = 38.2°, a surface plasmon resonance peak between 500–580 nm, and the spherical shape observed in the transmission electron microscope images, as well as the visual change in color from pink to purple. Interestingly, by simply dipping the material into a reaction solution of 4
  • TEM 3D tomography at low accelerating voltage with topography-based reconstruction to show the pore orientation at the various angles with the presence of AuNPs (see Supporting Information File 1 for the movie). Optical properties of AuNPs Surface plasmon resonance (SPR) peaks in the UV–vis spectrum
  • 140 minutes. Summary of the d100 XRD peaks, d-spacing of mesoporous silica, the crystallite size based on calculations using Scherrer’s equation, and the surface plasmon resonance (SPR) peak maxima of the AuNPs after both types of heat treatments. Supporting Information Supporting Information File
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • the carriers migrating to the surface of the semiconductor to participate in the photoreactions [15]. Decorating semiconductors with noble metals, such as Ag, Au, and Pt, is a strategy to enhance the photocatalytic performance. Certain noble metals exhibiting surface plasmon resonance (SPR) can
  • photogenerated electron–hole pairs, thus greatly improving the photocatalytic activity of the semiconductor photocatalyst. Conclusion 0D/1D heterostructure Au/CBO composite photocatalysts were synthesized by a simple in situ thermal reduction–precipitation method. Due to the plasmon resonance effect of the Au
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • ], surface plasmon resonance [10], molecularly imprinted polymers [6], and fluorescence polarization [11] have been proposed to detect TNT. However, most of these techniques have major limitations such as cumbersome pretreatment, complicated operation, long detection time and high cost. In recent years
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • electromagnetic field caused by localized surface plasmon resonance [46]. In order to create more nanogaps and to generate more hot spots to improve the SERS effect, a number of nanostructures based on metal particles were prepared by different methods, such as thermal evaporation [47], electrospray [48], inject
  • results. The reflectance UV–vis spectra of the samples are presented in Figure 3b. No obvious absorption band was observed for the bare cellulose filter paper (Supporting Information File 1, Figure S4). For sample Ag-NP/cellulose-NF–A, the strong surface plasmon resonance absorption band of silver
  • nanoparticles was observed at around 400 nm. With increasing size of the silver nanoparticles, this band gradually broadened and red-shifted to 450 nm for sample Ag-NP/cellulose-NF–E. It is known that, along with the increment of the silver nanoparticle sizes, the corresponding surface plasmon resonance band
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • percolation threshold has the SERS signal about four times lower than the highest signal sample. Keywords: metal island film; plasmon resonance; semicontinuous silver film; SERS; surface-enhanced Raman spectroscopy; Introduction Noble metal nanostructures exhibit exceptional optical properties. They can
  • efficiently absorb and/or scatter visible and near infrared electromagnetic radiation [1]. The origin of the above phenomena lies in localized surface plasmon resonances (LSPR). LSPRs are light induced oscillations of free electrons in metallic nanostructures. The spectral position of an LSPR depends on the
PDF
Album
Full Research Paper
Published 15 May 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • exert its antiviral activity from the outside of the cell. Thus, the addition of FluPep to cells in culture prevents infection by influenza viruses, as does intranasal delivery of the peptide in a murine model of human influenza [15]. Noble-metal nanoparticles possess a strong plasmon absorbance, which
  • electrolyte-induced aggregation of the nanoparticles, demonstrated by a decrease in the plasmon absorption at 520 nm. Gold nanoparticles with a ligand shell incorporating 5% (mol/mol) FluPep ligand had a very similar resistance to ligand exchange with DTT as the control mixed-matrix-protected gold
  • nanoparticles were then applied to the column, the unbound fraction was recovered. Columns were washed with PBS and eluted with 1 M NaCl and then 2 M NaCl in 8 mM Na2HPO4, 15 mM KH2PO4, pH 7.4. Calculation of the aggregation parameter (AP) The surface plasmon absorption peak of 8.8 nm diameter gold
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019
Graphical Abstract
  • suitability of plasmonic SERS labels for ultrasensitive analytical and biomedical applications is evident. Keywords: discrete dipole approximation (DDA); gold nanoparticles (AuNPs); nanotags; surface-enhanced Raman scattering (SERS); surface plasmon resonance (SPR); Introduction In surface-enhanced Raman
  • phenomena, the local electric field enhancement due to the surface plasmon resonance of the metal nanostructure (electromagnetic enhancement) and the charge transfer between the molecule and the metal substrate (chemical enhancement) [6][7][8]. In addition, given the generally low Raman scattering cross
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • is smaller than 3 nm, the surface plasmon resonance band broadens into the baseline and the absorption spectra show only the characteristic exponential decay curve [40]. For even smaller AuNCs, some molecular features may begin to appear because of the presence of HOMO–LUMO band gaps [41]. The inset
  • transition of the HOMO–LUMO bandgap of the subnanometer-sized NCs [42]. For the final precipitated fraction (F90%, Au11 clusters), its UV absorption decays to visible light in an approximately exponential manner with no detectable surface plasmon spectral bands. All the normalized PL spectra for the crude
PDF
Album
Full Research Paper
Published 25 Apr 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • cheap, reliable, reproducible and efficient SERS substrates. The SERS effect is generally assumed to mainly originate in the electromagnetic field enhancement caused by a localized surface plasmon excitation in nanostructures through the incident laser light. With respect to the substrate. It depends on
  • ][8][9], photovoltaics [10] or optical sensing through localized surface plasmon resonance (LSPR) [11]. It is therefore not surprising that quite a number of studies have been initiated and performed in order to design and fabricate highly active SERS substrates based on metallic nanoparticles and
  • ,respectively. The samples with the smallest dimensions of silver nanoislands (samples A, B, F, G, H, and I) have completely different shapes of spectra. These samples have a much lower reflectance in the range of 350 to 850 nm with one characteristic minimum between 400 and 430 nm, which corresponds to plasmon
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • having a thickness of 10 ± 3 nm. No uncoated AuNRs and free PDA particles were observed on the TEM images of the sample (Figure 1B). From an optical point of view the PDA coating leads to a red-shift of plasmon bands by 5–7 nm and sligth decrease in extinction. At the second stage, PDA-coated nanorods
  • tetrachloroaurate trihydrate (HAuCl4·3H2O) and silver nitrate (AgNO3, >99%) were purchased from Alfa Aesar. Ultrapure water obtained from a Milli-Q Integral 5 system was used in all experiments. Synthesis of AuNRs AuNRs with a plasmon peak at around 800 nm were obtained by the seed-mediated growth method [41
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • important for SERS enhancement, but also the quality of the hot spots. We can see that when Ag sputtering freezes the SiNW structure, SiNWs cannot aggregate to bundles and consequently the SERS intensity decreases. A possible shift of the localized surface plasmon absorption band is out of the scope of this
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • signal intensity [3]. When incident light interacts with the free conduction electrons near the metallic plasmonic nanostructures, the collective oscillation of these electrons is significantly enhanced at metal–dielectric interfaces, which is known as localized surface plasmon resonance (LSPR). Namely
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • plasmon resonances of the nanostructured metal surface when excited by incident light. The generally weaker chemical enhancement mechanism (CE) is thought to be associated with electronic interactions such as charge redistribution, hybridization, or other interactions between molecular adsorbate and the
  • Raman active modes of benzenethiol on different substrates and when limited to within a fraction of the localized surface plasmon bandwidth. Representative Raman spectra of self-assembled monolayers of benzenethiol acquired on four different metal substrates, in comparison to neat benzenethiol are
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019
Other Beilstein-Institut Open Science Activities