Search results

Search for "quartz" in Full Text gives 392 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • predominantly observed on primary rat osteoblasts cultured on bioglass, which is less negative in zeta potential compared to quartz glass. Membrane holes and smaller protrusions Though the ruffles are the most prominent feature we observe on the osteoblastic cells, further membrane features, such as holes and
  • coating was measured online by a quartz crystal thickness monitor (Cressington MTM 10, UK) and the sputter process was stopped at a nominal value of approximately 10 nm. The Au layers were only applied to half of the glass area in order to create an in situ reference. Since we observed spread cells
PDF
Album
Full Research Paper
Published 12 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • monolayer/s. The deposition rate was obtained by previously performed calibration measurements using a quartz microbalance, which was positioned in the same direction and distance toward the evaporation source as the sample in order to obtain comparable results. The surface coverages shown herein represent
PDF
Album
Full Research Paper
Published 16 Feb 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • the optimal diameter was found to be 0.1 mm. Keywords: finite element method; long tilted tip; noncontact atomic force microscopy; qPlus sensor; quartz tuning fork; simulations; Introduction Quartz tuning forks are widely used in the watch industry because of their low frequency offset over a wide
  • temperature range [1]. In addition, quartz tuning forks have a high elastic constant, a high quality factor (Q factor), and are self-sensing due to the piezoelectric effect [1]. Therefore, a quartz tuning fork can be used as a force sensor. The central part of the “qPlus sensor” is a quartz tuning fork of
  • optimal tip size can be derived from the simulation results. Methods Model and parameters The model in the simulation is based on an MS1V-T1K-type quartz tuning fork used in our experiment (details will be described later). The dimensions of the MS1V-T1K quartz tuning fork, length L = 3423 µm, width W
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • carpets [22], less conventional and complex structures were also developed and their formation mechanism is proposed in this study. In a typical AACVD synthesis, MWCNTs grow perpendicular to the substrates (i.e., quartz reactor walls or silicon wafers [23]). Under the conditions of the present study, it
  • features in the Raman spectra were observed in all MWCNT structures with different sections investigated in this study. Under the experimental conditions leading to the C1/N2/C3 structure, more peeling off is observed. After synthesis, a simple bending of the quartz tube, which is used as a reactor
  • piezoelectric generator, a quartz tube (2.2 cm inner diameter), a 50 cm long horizontal tube furnace, a gas flow controller, and an acetone gas trap. The total gas flow was 2500 sccm for all experiments. In order to obtain different compositions within the MWCNTs, different sequences of different precursors
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Absorption and photoconductivity spectra of amorphous multilayer structures

  • Oxana Iaseniuc and
  • Mihail Iovu

Beilstein J. Nanotechnol. 2020, 11, 1757–1763, doi:10.3762/bjnano.11.158

Graphical Abstract
  • weighed and filled into quartz ampoules, which were sealed under vacuum (P = 10−5 Torr). After sealing, the ampoules were heated for 48 h at a temperature of T = 1000 °C. The ampoules were then let to cool in air to room temperature. Some of the glass samples were then cut and polished for optical
PDF
Album
Full Research Paper
Published 20 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • during the HNO3 etching. The chips have then been placed in a tubular quartz furnace together with the solid source. As a solid source, we used ceramic wafers provided by Techneglass (PhosPlus TP-250). The face of the chips with the nanowires has been placed in contact with the ceramic wafer. The sealed
PDF
Album
Full Research Paper
Published 11 Nov 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • (100) crystal was cleaned by cycles of Ar+ sputtering and annealing at 500 °C. MgO(100) films were grown by Mg evaporation in an oxygen environment. The Mg fluxes used were on the order of 1 Å/min as monitored by a quartz microbalance. The MgO deposition was done at a temperature of 270 °C and at an O2
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • coverage of the pyrene modules was deposited by organic molecular beam epitaxy from thoroughly degassed quartz crucibles held at 450–500 K. During deposition, the Cu(111) surface was kept at rt, and the pressure remained below 2 × 10–9 mbar. The STM images were acquired in constant current mode, with the
  • absorption and emission spectra. Absorption spectra were recorded using air-equilibrated solutions at rt, with an Agilent Cary 5000 UV–vis spectrophotometer using quartz cells with a path length of 1.0 cm. Emission spectra were recorded on an Agilent Cary Eclipse fluorescence spectrofluorometer. Emission
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • by an in situ micro quartz crystal sensor. The particle formation has been done by thermal annealing under vacuum conditions. The wafers with Cu and Pt have been annealed in vacuo, while the wafers with Au and Pd were annealed ex situ. Each annealing consists of a heating phase, 30 min of annealing
PDF
Album
Full Research Paper
Published 23 Sep 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • ) equipped with a He–Ne laser LGN-111 (P = 25 mW, λ = 633 nm). A suspension of γ-Fe2O3 nanoparticles (1 mL) in the standard salt solution was placed to a cylindrical quartz cuvette of 10 mm in diameter, which was inserted into the laser correlation spectrometer. The measurement range of the instrument is
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • ) wafer. The subsequent chemical–mechanical polishing provided a highly flat surface (RMS = 0.3 nm). Gold with a nominal thickness of 1 nm was evaporated from an effusion cell onto the heated substrate with a deposition rate of 0.01 nm/s, which was calibrated before with an Inficon XTC/3 quartz crystal
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • [60] and vacuum-sublimed on clean metal surfaces (prepared by repeated Ar+ ion sputtering and annealing cycles [up to 550 °C]), with deposition rates of about 0.5 Å/min. The film mass thickness was monitored with a quartz crystal microbalance (QCM) near the sample, and a nominal thickness of 4 Å is
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • et al. [32], Na2B4O7·10H2O (Borax) (Sigma-Aldrich, Germany) was used as a structure directing agent for the preparation of one sample. The concentration in the ᴅ-fructose solution was 0.06 wt %. 20 g of the solution with or without borax was poured into a 25 mL quartz tube and was heated in a Teflon
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • studied using atomic force microscopy, after depositing the samples on quartz wafers. Figure 5 shows the 2D- and 3D-AFM images of BTO, BTO-PTh, and PTh samples along with their surface profiles. The micrographs of BTO nanoparticles show the presence of clusters on the surface. This is in agreement with
PDF
Album
Full Research Paper
Published 10 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • growth temperature of 720 °C, which yields a certain SiNW diameter distribution. VLS nanowire growth is carried out in a quartz tube furnace with a precursor gas mixture of H2 (270 sccm) and SiH4 (30 sccm), at a pressure of 100 mbar. Silicon shells are grown at a temperature of 520 °C with a gas mixture
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • spectrum, is another well-known suitable agent for the NIR photothermal conversion [89]. This material is prepared by assembling polyelectrolyte-stabilized reduced graphene sheets on a quartz surface to efficiently generate localized heating under simulated solar light irradiation, resulting in a >90
PDF
Album
Review
Published 31 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • long quartz cuvettes. The Raman spectra were obtained by means of a Thermo Scientific DXR Raman Microscope equipped with a diode-pumped solid-state laser (DPSS) at wavelength of 532 nm as the excitation source. A 10× objective with a 50 µm slit aperture and 5 s of exposure time were used. The laser
PDF
Album
Full Research Paper
Published 17 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • quartz microbalance sensor. Three different values of Au thickness, namely 3, 6, and 15 nm, were selected enabling the formation of different sizes of AuNPs through subsequent annealing. Selected samples underwent annealing at 500 °C for 2 h in air, in a Lenton muffle furnace with 4 °C/min heating ramp
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • Information File 1). The reactions were carried out in quartz or Teflon beakers. A Teflon beaker also served as a carbon and fluorine source for the experiments. Typically, 100 mg of acid-treated metal powder mixed either with graphite powder or g-C3N4 (50 mg) were placed inside a domestic kitchen microwave
  • according to [18]. In a typical reaction, melamine (150 mg) and urea (71 mg) are mixed in a quartz boat and heated at 650 °C under nitrogen flow for 2 h to obtain bulk g-C3N4 as orange product. Generation of nanomaterials using microwave-induced discharge To generate nanoparticles by microwave-induced
  • discharge, the reaction is conducted either in a quartz or a Teflon beaker. A Teflon beaker also serves as a carbon and fluorine source for the experiments. Typically, 100 mg of acid-treated metal powder mixed either with graphite powder or g-C3N4 (50 mg) and placed inside a domestic kitchen microwave (2.54
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • . Subsequent studies showed that it was possible to increase the concentration range sensitivity to more than 300 ppm NO2 by growing single-crystalline microtubes. In order to do that, Te metal was evaporated onto quartz substrates under an inert argon gas at ambient pressure [7]. Later, it was also found that
  • sensing parameters did not differ much from the similar parameters obtained earlier for microcrystalline Te films. Further investigations have been extended to Te nanotubes grown on quartz or Si(111) substrates through a catalyst-free growing process in a furnace filled with argon [21]. Another study used
PDF
Album
Full Research Paper
Published 10 Jul 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • possibility for easy doping and preparation of homogeneous films with good electrical and optical properties. The films are prepared on various substrates such as ZnO [6], MgO [17], Si [2][3][4][23], CaF2 [12], Al2O3 [18], sapphire [7][10][11][13][14][15][16][19][31][32], glass and quartz [1][20][21][23][24
  • ][25][26][27][28][29][30][33][34]. The choice of the substrate is determined by the application. In particular, glass, quartz or sapphire substrates are usually used for photodetectors in the metal–semiconductor–metal (MSM) configuration, including Schottky photodetectors [1][19][24][25][28][29][30][31
PDF
Album
Full Research Paper
Published 12 Jun 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • [21]. Two-zone furnaces allow for an extended homogeneous growth even on a cm range, which is in a much longer tube section than possible in a one-zone furnace [19]. The quartz tube (Øinner = 5 cm) is attached vacuum-tightly to a gas inlet and a gas outlet. The gas inlet is connected to two mass flow
  • furnace with the powder boat within the upstream half of the quartz tube (Figure 1). Here, the tube was simulated as cylinder (Ø 5 cm) (Figure 1). The temperature of the tube was selected to be 800 °C according to the above-mentioned publications [15][16]. For reasons of simplification and to enable a
  • the cross-sectional area of the quartz tube and T and p are the process temperature and the process pressure, respectively. As seen from the simulation results, the higher the volumetric flow rate per cross-sectional area, the faster the equilibrium metal vapor concentration is reached and the higher
PDF
Album
Full Research Paper
Published 28 May 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • rate (0.25 ML/min) was determined using a quartz crystal microbalance. Scanning tunneling microscopy (STM) experiments were performed with the use of either a low-temperature STM (LT-STM) operating at ca. 78 K or a room-temperature STM (RT-STM) manufactured by Scienta Omicron installed in a separate
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • dispersions was recorded using a UV–vis spectrophotometer (Perkin Elmer Lambda 750) in 10 mm quartz cuvettes. The concentrations of dispersions were determined by using thermogravimetric analysis. For this, 4 mL of MoO3 dispersion was filled in a 5 mL beaker followed by drying off the solvent at 80 °C in a
PDF
Album
Supp Info
Letter
Published 17 Apr 2020
Other Beilstein-Institut Open Science Activities