Search results

Search for "seeds" in Full Text gives 83 result(s) in Beilstein Journal of Nanotechnology.

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • wet-chemistry synthesis of NPs that the degree of supersaturation can be used to tune particle sizes and size distribution. At high supersaturation ratios, fast nucleation rates are attained and the ensuing rapid consumption of the elemental species (nucleation burst) results in a high number of seeds
PDF
Album
Full Research Paper
Published 14 Apr 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • temperature of the growth process was reduced (Synthesis IX), N-CNTs could not be detected and only catalyst particles of different heights and diameters were found as bright spots (‘seeds’) on the quartz substrate. In conclusion, the highest ‘quality’ of the nanotube arrays, i.e., no waviness, and a high
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • position of the seeded Au NP. An electroless Au deposition onto already existing Au seeds, which is based on combining a gold salt (HAuCl4) and a reducing agent (NH2OH), has been reported [13][14]. Recently, a direct photochemical re-growth of Au particles without any reducing agents was developed [15][16
  • Figure 4. (a) Pillar pattern fabricated on the SiO2 substrates by a short RIE step [pillar height (h) = 25 nm, initial NP diameter = 12 nm, final NP diameter = 9 nm (average values)]. (b) Photochemically grown Au particles on the seeds of panel (a) [final NP diameter = 24 nm (average)]. (c) Seeded Au NP
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013

The morphology of silver nanoparticles prepared by enzyme-induced reduction

  • Henrik Schneidewind,
  • Thomas Schüler,
  • Katharina K. Strelau,
  • Karina Weber,
  • Dana Cialla,
  • Marco Diegel,
  • Roland Mattheis,
  • Andreas Berger,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2012, 3, 404–414, doi:10.3762/bjnano.3.47

Graphical Abstract
  • conductivity of accumulated metal nanoparticles in a gap between two electrodes [6][7]. A further promising application of metal nanoparticles concerning the synthesis of bioanalytically adaptive nanoparticles is the usage as reaction seeds for a specific reductive metal deposition process. The subsequent
  • shown in Figure 1. After the preliminary substrate cleaning and preparation, an amino-modified single-strand DNA was bound onto the substrate in order to act as seeds for the silver growth (a). In a second step, the enzyme horseradish peroxidase (HRP) is applied and bound to the DNA (b). Finally, the
  • different starting concentrations of DNA between 0.16 µM and 10 µM. The DNA molecules act as seeds for the growth of the silver nanoparticles. In succession, HRP was added as a catalyst to initiate the growth of the silver nanoparticles. The concentration of HRP was 1:1000 for all samples with regard to an
PDF
Album
Full Research Paper
Published 18 May 2012

Low-temperature solution growth of ZnO nanotube arrays

  • Ki-Woong Chae,
  • Qifeng Zhang,
  • Jeong Seog Kim,
  • Yoon-Ha Jeong and
  • Guozhong Cao

Beilstein J. Nanotechnol. 2010, 1, 128–134, doi:10.3762/bjnano.1.15

Graphical Abstract
  • of tube-shaped ZnO was due to a selective deposition of colloidal Zn(OH)2 at the edge of the (001) plane of ZnO nanorods that were formed in the beginning stage of the reaction. Results and discussion Figure 1 shows the SEM image of the film of ZnO seeds on an indium doped tin oxide (ITO) substrate
  • significantly affected by the uniformity and crystal size of the seeds, which act as initial sites for the crystal nucleation [29][30][31][32]. The presented electrophoretic deposition method was effective for making high-quality ZnO nanocrystallite seeds on ITO substrates, as reported previously [33][34][35
  • . Experimental ZnO nanorods were grown on an indium doped tin oxide (ITO) glass substrate, on which ZnO nanocrystallites as seeds were pre-prepared via an electrophoretic deposition. Typically, the ITO substrate was immersed in a 0.5 M zinc nitrate (Fisher Scientific Corp., USA), and an electric potential of 2.5
PDF
Album
Full Research Paper
Published 09 Dec 2010

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • , the formation of nucleation seeds is initiated. After formation, seeds absorb free metal atoms and continue to grow. The role of the tensides will be discussed below, however at this point, it is sufficient to know that they act as stabilizers for the particles; the resulting nanoobjects have a shell
  • of the corresponding molecules. The particle growth dynamics can be explained in the frame of the LaMer model [12] which describes the growth process in two separate steps (Figure 1, blue line): above a critical concentration of free metal atoms, nucleation seeds are formed. Once the concentration
  • drops below a critical threshold, the number of seeds remains constant and the existing seeds continue to grow. From a thermodynamic point of view, nucleation seeds are formed once the nucleation energy barrier is exceeded. The free enthalpy ΔG is composed of surface contributions GS and the bulk
PDF
Album
Review
Published 22 Nov 2010

Aerosol assisted fabrication of two dimensional ZnO island arrays and honeycomb patterns with identical lattice structures

  • Mitsuhiro Numata and
  • Yoshihiro Koide

Beilstein J. Nanotechnol. 2010, 1, 71–74, doi:10.3762/bjnano.1.9

Graphical Abstract
  • the ZnO nanocrystals adhered to the TiO2 seeds which revealed that the crystals were hardly removed by the tape applied to the surface with light pressure. The control of the spatial pitch was demonstrated as well by changing the diameter of the polystyrene beads employed in the PSL procedure. Figure
PDF
Album
Letter
Published 22 Nov 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • . Growth of ZnO Nanorods The ZnO nanorods were grown hydrothermally on glass substrates, which were initially thiolated for better attachment of the ZnO nanoparticle seeds [31]. Hydrothermal growth of ZnO nanostructures is a simple and thermally efficient process [27]. Seeding was done by dip coating with
  • a colloidal solution of ZnO nanoparticles and annealed at 100 oC for 30 min. The seeds served as nucleation sites and the ZnO nanorods grew preferentially along the c-axis of the wurtzite structure when the seeded substrate was placed in an aqueous chemical bath containing equimolar zinc nitrate
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities