Search results

Search for "semiconductor" in Full Text gives 618 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • –metal charge transfer (LMCT). For this reason, these MOFs are considered as emerging semiconductor-like photocatalysts and attention is growing toward these materials [26][27][28][29]. In 2007, Garcia and coworkers have first reported photocatalytic degradation of phenol by using MOF-5 as a
  • ][21][35]. However, pure phase MIL101(Fe), like most semiconductor photocatalysts, has inherent defects, such as low conductivity and high recombination efficiency of photogenerated electron–hole pairs [26][36]. To overcome these shortcomings, several strategies have been developed. One approach is to
  • be improved by combining it with other suitable semiconductor materials to construct Z-scheme heterojunctions. Bismuth trioxide (Bi2O3), a metal oxide semiconductor with a bandgap of 2.8 eV, can be excited by visible light [43][44]. However, pure Bi2O3 exhibits poor photocatalytic activity due to the
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • zirconia will also create oxygen vacancies, although of different concentration due to the different oxidation states of Fe and Ni. Furthermore, O vacancies may be inadvertently introduced into semiconductors as a result of the processing conditions. For example, in a semiconductor manufacturing process
PDF
Album
Full Research Paper
Published 15 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • transmittance and suitable surface area for degrading methylparaben. Although Ti-doped catalyst was expected as a semiconductor to enhance the photocatalytic efficiency, pure LaFeO3 still revealed the better performance of methylparaben photodegradation than LaTi0.15Fe0.85O3 [28]. On the contrary, Garcia-Muñoz
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • , respectively. Therefore, the EVB and ECB values of the TiO2 semiconductor are calculated to be 2.87 and −0.25 eV, and those of the Bi2WO6 semiconductor are 2.91 and 0.51 eV, respectively. Based on the results of the above photoelectrochemical characterizations and the scavenger experiments of the active
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • thermal drift between darkness and illumination. In the case of semiconductors, an electric field is screened on the scale of the Debye length LD [3], where kB is the Boltzmann constant, T is the temperature, ε0 is the vacuum permittivity, εr is the relative permittivity of the semiconductor, e is the
PDF
Album
Full Research Paper
Published 25 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • all Raman peaks. This is attributed to the fact that these vibrational modes possess large dipoles leading to a strong dipole–dipole interaction with the underlying h-BN. The MoSe2 monolayer used in our work is a direct-bandgap semiconductor and has a polar covalent bond (Mo–Se). The Raman peaks of
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • with three types of crystal phase, that is, trigonal (1T), hexagonal (2H), and rhombohedral (3R). Considering electrocatalytic applications, the 1T metallic phase exhibits a higher catalytic activity than the 2H and 3R semiconductor phases [11][17]. Moreover, it is well known that the electrocatalytic
  • modes, E2g (in plane) and A1g (out of plane), observed at 376 and 403 cm−1, respectively, are attributed to the 2H semiconductor phase [31][32][33]. The three first-order Raman modes, A1g, E2g, and E1g (288 cm–1), are attributed to vibrational modes of the S–Mo–S layer. Other well-known multiphonon
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • metal NPs through the creation of “hot spots”, small gaps between NPs (less than 10 nm), due to interparticle EM coupling under the incident light. Similarly, large field enhancements can arise around sharp tips and edges on the rough surface of NPs. The EM enhancement effects on semiconductor
  • years due to important advantages that they offer, for example, good recyclability, long-term use, and cost effectiveness. For ultrasensitive detection of molecules, however, the SERS performance of standalone semiconductor substrates is too weak. Therefore, the development of hybrid nanomaterials based
  • on semiconductors decorated with noble metals, or vice versa, has been proposed. These hybrid nanostructures show enhanced optical and electronic properties due to the coupling between the noble metal and the semiconductor [10][11][13]. Various fabrication techniques have been employed to develop
PDF
Album
Review
Published 27 May 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • , it can be considered that for films deposited at X ≥ 50 mm, more Al3+ ions were successfully incorporated into the host lattice as the aluminium content increases (confirmed by the EDS results) and the Al2ZnO4 phase decreases (confirmed by the XRD results). ZnO is a wide-bandgap semiconductor with
PDF
Album
Full Research Paper
Published 31 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • surface. When the materials are separated, the positive and negative electrostatic charges on the materials will also be separated, resulting in a potential difference. The charge transfer strongly depends on the work functions of the two materials in contact, for example, metal–metal, semiconductor
  • semiconductor and semiconductor–metal contact pairs [14][15]. A semiconductor–metal contact can be described by the band diagram shown in Figure 1. The frictional electrical properties of materials depend on their work functions and Fermi levels [16][17]. The intermediate state in the bandgap can reduce the
PDF
Album
Full Research Paper
Published 15 Mar 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • transmission coefficient in the visible part of the optical spectrum was measured using a scientific grade CCD QE65000 spectrophotometer (Ocean Optics). For DC current-to-voltage electrical measurements, a Keithley SCS4200 semiconductor characterization system and a M100 Cascade Microtech probe station were
PDF
Album
Full Research Paper
Published 24 Feb 2022

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • , University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland 10.3762/bjnano.13.13 Abstract Motivated by the potential role of molybdenum in semiconductor materials, we present a combined theoretical and experimental gas-phase study on dissociative electron attachment (DEA) and dissociative ionization (DI) of Mo
  • ; dissociative ionisation; focused electron beam-induced deposition; molybdenum hexacarbonyl; Introduction Studies on Mo-based semiconductor materials for the application as thin films with wafer-scale thickness homogeneity [1] and for solar hydrogen production [2] have attracted interest in the last years. For
PDF
Album
Full Research Paper
Published 04 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • three-dimensional metal oxide semiconductor field-effect transistors (MOSFETs) [1]. Here, formation processes of ultrathin SiO2 at the interface are considered to be quite important in determining its dielectric properties. To study procedures to fabricate gate dielectrics, it will be necessary to
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • well-known differences between these two phases is their electronic properties. Using MoS2 as an example, its 1T′ and 2H polytypes are discussed by presenting their DOS and band structure, as illustrated in Figure 5a. There is a bandgap in the 2H polytype, which indicates that it is a semiconductor. On
  • corresponding -IpCOHP values of Mo–S bonds of the semiconductor lie within the values of the long and short Mo–S bonds in 1T′ polytypes. Figure 5b, therefore, suggests that the Mo–S bonding strength of 2H MoS2 is weaker or stronger than that of the short or long Mo–S bond, respectively, in the 1T′ phase. Figure
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • working scheme of semiconductor photocatalysts for NO oxidation. Light generates holes (h+) in the valence band (VB) and electrons (e–) in the conduction band (CB) of the photocatalytic material. Electrons at the material surface will react with oxygen molecules to form superoxide radicals (•O2
  • to the reduction of O2 to •O2− [31][33] and the rapid recombination rate of photoinduced electron–hole pairs [34], the photocatalytic ability of SnO2 is less efficient than that of other semiconductor photocatalysts (Figure 2b). Despite literature relating to the unfavorable CB edge of SnO2, many
  • reflectance spectroscopy (DRS) [35][36][37][38][39][40]. This promotes a new avenue for diverse analyses of semiconductor photocatalysts in addition to the traditional theories and conclusions. Previous studies have shown that the photocatalytic activity of NOx decomposition of materials in general and SnO2
PDF
Album
Review
Published 21 Jan 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • [6]. In another theoretical work, a Cr@Ge10 nanocluster was shown to be a candidate for a transition metal-doped magnetic superatom [7], which behaves as if it was one atom. Unique magnetic properties have been found in diluted magnetic semiconductor (DMS) alloys [8]. Silicon and/or germanium are a
  • their magnetic defects and their interactions with charge carriers. Antiferromagnetic clusters in CrGe NWs were investigated using electron spin resonance. Spin–orbit interaction between charge carriers and magnetic defects were studied [9]. Cr/Ge nanotowers as a dilute magnetic semiconductor were
  • prepared, too. Magnetic properties were measured and the growth mechanism was discussed [10]. The formation of Cr/Ge nanoparticles during the epitaxial growth of Cr/Ge films and their magnetic properties were studied to understand the ferromagnetic semiconductor behavior [11]. In this work, we made an
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • through an optical window with IR filters using a semiconductor synthesizer with a multiplier (70–78 GHz) or using a backward wave oscillator (230–370 GHz). The JJ transport properties and the response were characterized by a precise Keithley low-noise current source and nanovoltmeter using a standard 4
PDF
Album
Full Research Paper
Published 23 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • been observed in semiconductor-based quantum dots (QDs) [1][2][3][4], in carbon nanotubes [5], and in molecular nanostructures [6][7][8][9]. Besides the spin, also other degrees of freedom, for example, orbital [10] or charge [11][12] can give rise to Kondo correlations. For systems with higher
  • studied in a number of papers [39][40][41][42][43][44]. Due to participation of localized phonons in single electron tunneling the phonon side bands appear in the spectral function of the dot. Interestingly, similar effects have been also observed in the rigid structures of semiconductor quantum dots
  • embedded in a freestanding GaAs/AlGaAs membrane [44][45][46][47][48]. It has been shown that morphology manipulation of semiconductor QDs such as size, shape, strain distribution, or inhomogenities can influence the coupling strength of electron–phonon (e–ph) interactions [49]. The phononic effects appears
PDF
Album
Full Research Paper
Published 12 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • ). Additionally, low cost, low power consumption, and simple fabrication of gas sensors are desirable factors. Different technologies have been used to detect numerous gases that include semiconductor, catalytic, electrochemical, optical, and acoustic gas sensors [8]. In particular, conductometric semiconductor
PDF
Album
Supp Info
Review
Published 09 Nov 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • -based binary chalcogenide SnX alloys (X = S, Se, and Te), the tin selenide (SnSe) compound belongs to the IV–VI semiconductor family and is the most studied TE material [1][5][31][32][33][34]. Tin selenide consists of economical, Earth-abundant, and nontoxic elements and has potential applications in
  • the next generation of electronic and photonic systems [35][36]. The orthorhombic α-SnSe, an indirect bandgap (0.9 eV) semiconductor, has been an immense research topic in the TE field since the highest ZT value of ≈2.6 at 923 K was reported in the p-type single crystal along the b axis [1]. The n
  • the X and Γ directions, respectively), which means that the electronic properties of the studied π-SnSe alloy provide a high value of the Seebeck coefficient [64]. The high value of the Seebeck coefficient for the studied π-SnSe semiconductor alloy shows that it can be used for building excellent TE
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • a wider choice of emission wavelengths compared to conventional lighting systems. Inorganic LED consist of inorganic semiconductor materials in the active region, for example thin films of GaAs that emit in the red to near-infrared (>700 nm) region [4]. Ga-based LED belong to the III–V group of
  • semiconductors and emit from the UV to the red region of the visible spectrum via bandgap tuning (i.e., on alloying with In and Al [5][6][7]). Similarly, other active materials for quantum dot light-emitting diodes (QLED), such as the II–VI semiconductor family include ZnO, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, and
PDF
Album
Review
Published 24 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • are several requirements for materials to be eligible for application in the field of photovoltaics, such as high absorption performance, nontoxicity, abundance, efficiency, and low cost. As a semiconductor with a low band gap and a high absorption coefficient, antimony(III) sulfide (Sb2S3) has become
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • have revealed that the bandgap value is suitable for optoelectronic devices. To the best of our knowledge, there is no study on the electrical properties of CuNiCoS4-based photodiodes. The usage of different materials as interfacial layers in metal–semiconductor devices is a hot research topic
  • regarding the development of more efficient metal–semiconductor devices such as photodiodes, photodetectors, and transistors [14][15][16]. The interfacial layer controls the current flow between metal and semiconductor and produces charge carriers under illumination [17][18]. Thiospinel CuNiCoS4
  • nanocrystals can be inserted between metal and semiconductor as interfacial layer to increase the effect of the illumination and to control electrical properties of the metal–semiconductor device. In this work, CuNiCoS4 nanocrystals were successfully obtained as interlayer of Schottky diodes. The electrical
PDF
Album
Full Research Paper
Published 02 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • dielectric layers on top of the surface [34][35] or a chemical modification of the surface to saturate the dangling bonds. In surface-science-based studies, for the latter approach hydrogenation of semiconductor surfaces is frequently applied as effective passivation against chemisorption of adsorbates [36
  • ][37][38][39], while also B deposition was shown to result in effective passivation of the Si surface [40][41]. In particular for electronic devices, oxidized semiconductor surfaces (e.g., silicon dioxide layers formed on bare silicon) are mostly used as substrates for fabricating devices [42]. Most of
PDF
Editorial
Published 23 Aug 2021
Other Beilstein-Institut Open Science Activities