Search results

Search for "surface tension" in Full Text gives 109 result(s) in Beilstein Journal of Nanotechnology.

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • wrapping the filler with polymers. The wrapping process involves π–π interactions and van der Waals interactions [2][40]. Surfactants have also been used to functionalize MLG and CNTs. Surfactants are physically adsorbed on the surface of CNTs. It lowers the surface tension of MLG and CNTs diminishing the
PDF
Album
Full Research Paper
Published 12 Aug 2016

Characterization of spherical domains at the polystyrene thin film–water interface

  • Khurshid Ahmad,
  • Xuezeng Zhao,
  • Yunlu Pan and
  • Danish Hussain

Beilstein J. Nanotechnol. 2016, 7, 581–590, doi:10.3762/bjnano.7.51

Graphical Abstract
  • , θM is the macroscopic contact angle, τ is the line tension, and γlg is the surface tension. The results were plotted against the radius of the spherical objects, as shown in Figure 3b. It was found that the line tension varies linearly with the radius/lateral size. This analysis also showed that the
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2016

Influence of calcium on ceramide-1-phosphate monolayers

  • Joana S. L. Oliveira,
  • Gerald Brezesinski,
  • Alexandra Hill and
  • Arne Gericke

Beilstein J. Nanotechnol. 2016, 7, 236–245, doi:10.3762/bjnano.7.22

Graphical Abstract
  • barrier and a Wilhelmy surface tension sensor. The temperature was kept at 20 °C by a thermostat. During experiments, the trough was kept hermetically sealed and flushed with He. At BW1 (DESY, Hamburg) the synchrotron beam was monochromated through a beryllium(002) crystal to a wavelength of 1.304 Å
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2016

Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

  • Amlan Dutta,
  • Arup Kumar Raychaudhuri and
  • Tanusri Saha-Dasgupta

Beilstein J. Nanotechnol. 2016, 7, 228–235, doi:10.3762/bjnano.7.21

Graphical Abstract
  • disordered atoms is much higher as compared to their crystalline counterparts since they access a relatively larger free volume. This causes a radially inward drift of the inner surface driven by surface tension. This inward drift results into large local stresses on the residual crystalline parts of the
  • subsequent elimination of stacking faults within the interior of the NW, after the inner surface is eliminated at the end of stage 1. We note that the nucleation of faults and defects is energetically less expensive in the presence of a surface, and that of an effective load generated by the surface tension
PDF
Album
Full Research Paper
Published 10 Feb 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • synthesiser. This solution was then pumped into the reactor during synthesis at a rate of 35 μL·min−1 giving an addition rate of 16.2 mg·min−1 for SDS and 1.74 mg·min−1 for CTAB. The addition rate was crucial to maintain a surface tension of 41 mJ·m−2, which is both the optimum surface tension for graphene
  • automation would require the monitoring of surface tension throughout the synthesis as well as automatic adjustments to the surfactant flow rate to maintain this at the required level of 41 mJ·m−2. Figure 1 depicts the assembled apparatus, the function of which is explained here. The aqueous suspension of
  • adding surface tension sensors to control the amount of surfactant being added to the reactor, thus maintaining a constant and optimum surface tension. The formation of individual graphene flakes and the interaction of alkyl chains of the surfactants with graphene were, respectively, confirmed with Raman
PDF
Album
Full Research Paper
Published 08 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

  • Gabriela Ramos Chagas,
  • Thierry Darmanin and
  • Frédéric Guittard

Beilstein J. Nanotechnol. 2015, 6, 2078–2087, doi:10.3762/bjnano.6.212

Graphical Abstract
  • Interference (PSI) working mode, the objective 50× and the field of view (FOV) 0.5×. The scanning electron microscopy images were obtained by using a 6700F microscope of JEOL. The contact angles were determined by using a DSA30 goniometer of Krüss. Liquids of different surface tension were chosen to
PDF
Album
Full Research Paper
Published 28 Oct 2015

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • to the interplay between the surface tension of the metal bismuth present in a liquid phase and the curved inner surface of the oxide shell. It is also believed that the wetting behavior of bismuth on the inner surface of the oxide shell can be influenced by other parameters such as the vapor
PDF
Album
Review
Published 18 Jun 2015

Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation

  • Andrey V. Nomoev,
  • Sergey P. Bardakhanov,
  • Makoto Schreiber,
  • Dashima G. Bazarova,
  • Nikolai A. Romanov,
  • Boris B. Baldanov,
  • Bair R. Radnaev and
  • Viacheslav V. Syzrantsev

Beilstein J. Nanotechnol. 2015, 6, 874–880, doi:10.3762/bjnano.6.89

Graphical Abstract
  • particles are investigated in order to elucidate their mechanisms of formation and factors affecting the synthesis. It is proposed that the formation of Cu@silica particles is mainly driven by surface tension differences between Cu and Si while the formation of Ag@Si particles is mainly driven by
  • system. In many cases, the surface tension of a liquid has a temperature dependence of the form which is valid for a certain temperature range above the melting temperature (Tm) of the material where σ(Tm) is the surface tension at the melting point of the material and dσ/dT is the rate of change of the
  • surface tension with temperature [14]. The empirical dependence of the surface tension of copper with temperature is [15]. The surface tension of silicon varies as [16]. Below the melting point, when the materials are solid, the surface energy is the solid equivalent of the surface tension. The surface
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2015

Applications of three-dimensional carbon nanotube networks

  • Manuela Scarselli,
  • Paola Castrucci,
  • Francesco De Nicola,
  • Ilaria Cacciotti,
  • Francesca Nanni,
  • Emanuela Gatto,
  • Mariano Venanzi and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 792–798, doi:10.3762/bjnano.6.82

Graphical Abstract
  • in contact with water from the equation [19]: where γLV denotes the surface tension of the liquid–vapor (LV) interface for water γLV = 72.5 mN/m, and Θ is the measured contact angle (Θ = 175°). The estimated adhesion force of the water droplet (20 µL) reported in Figure 4b, is about 50 µN. Measuring
  • contacting the water droplet, θ* is the apparent contact angle, and θ is the Young’s contact angle of the surface, with cosθ defined as: where γSV, γSL, and γLV denote the surface tension of the solid–vapor (SV), the solid–liquid (SL), and the liquid–vapor (LV) interface, respectively. If we insert in
PDF
Album
Full Research Paper
Published 23 Mar 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • . The quantity γhkl is the energy required to create a surface of unit area normal to the [hkl] vector, and is the analogous of the surface tension for liquids. This process is repeated for all sets of Miller indexes, (hkl). The space that lies inside all these planes defines the equilibrium shape for
  • theorem is a generalization that considers lateral strain [14]. When the material under study is at equilibrium with another gas- or liquid-phase material, the interface tension, , is used in the Wulff construction instead of the surface tension, γhkl. The two are connected by a simple formula that
  • , they have a much higher surface tension than low-index faces; (if a high-index surface and a low-index surface have equal surface tensions, the low-index will have a greater area as the high-index face will be steeper and will be hidden in the Wulff construction); does not take into account edge- and
PDF
Album
Review
Published 03 Feb 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • since ethanol has a lower liquid–vapor surface tension (γLV = 22 mJ·m−2) than water (γLV = 72 mJ·m−2), the higher the ethanol concentration in water, the lower the surface tension of the solution. Furthermore, the contact angle is generally proportional to the liquid surface tension by the Young’s
  • relation where γSV and γSL are the solid–vapor and solid–liquid surface tensions, respectively. Therefore, also the contact angles of the carbon nanotube films decrease with the decrease in surface tension of the liquid droplet. This phenomenon is connected to the lipophilicity of the apolar surface of the
  • respect to the MWCNT surface. Wetting states are studied changing the liquid surface tension by adding different ethanol concentrations in water. Wenzel regime (green solid line) fit reports a roughness factor r = 1.08 ± 0.01, while lipophilic (blue solid line) and hydrophobic (red solid line) Cassie
PDF
Album
Full Research Paper
Published 02 Feb 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • area at a given indentation depth and A0 the surface area prior to indentation. Static equilibrium can be expressed by the Young–Laplace equation, which describes the pressure difference across the fluid interface as a function of surface tension T and mean curvature. The task is to determine the
PDF
Album
Full Research Paper
Published 20 Jan 2015

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • is required, which consists of the surface energy of the meniscus plus the interface energy of the tip–water contact area minus the surface energy of the original flat air–water interface before formation of the capillary contact. Here, σ = 0.07275 N/m [25] is the surface tension of the liquid (here
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

  • Florian G. Strobl,
  • Florian Seitz,
  • Christoph Westerhausen,
  • Armin Reller,
  • Adriano A. Torrano,
  • Christoph Bräuchle,
  • Achim Wixforth and
  • Matthias F. Schneider

Beilstein J. Nanotechnol. 2014, 5, 2468–2478, doi:10.3762/bjnano.5.256

Graphical Abstract
  • . Mechanical aspects of such a colloid–membrane interaction are treated by several theoretical models. A simple, purely mechanical picture of such an interaction involves at least three mechanical parameters: the adhesion energy per unit area gad, the bending stiffness of the membrane κ and its surface tension
  • mJ/m2 (see below). This results in rcrit = 14 nm. Hence, the bending stiffness of the membrane should be considered for particles in the nano-regime. As soon as the membrane under observation exhibits a finite surface tension, its area compressibility modulus gten has to be considered as well, since
  • consume a membrane patch with a surface area of Ap = 4πr2. If the vesicle volume would stay constant, the uptake of particles would stop at latest as soon as the surface tension of the vesicle σ exceeds the adhesion energy per unit area: Here, gten denotes the area compressibility modulus and ε the
PDF
Album
Full Research Paper
Published 23 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • attachment mechanism of sessile aquatic animals and the aquatic realm presents many challenges to this mode of attachment. Viscous forces and the lack of surface tension under submerged conditions also affect frictional interactions in the aquatic environment. Moreover, the limitation of suction to the
  • separates two hydrophilic surfaces in air. Pulling the surfaces apart will create a larger air–water boundary surface area. The surface tension of the liquid will resist to this increase and this is manifest as an adhesive force. According to [3] Laplace's law ought to be applied: The pressure difference
  • (Δp) can be calculated from surface tension (γ), the overall radius of the liquid (ro) and the radius of the curved edge (re) (Figure 4). In contrast, under fully immersed conditions the surface tension should be zero, so that generally no capillary forces will occur under these conditions. This is an
PDF
Album
Review
Published 17 Dec 2014

Liquid-phase exfoliated graphene: functionalization, characterization, and applications

  • Mildred Quintana,
  • Jesús Iván Tapia and
  • Maurizio Prato

Beilstein J. Nanotechnol. 2014, 5, 2328–2338, doi:10.3762/bjnano.5.242

Graphical Abstract
  • surface. The strong molecular interactions between graphene layers and DMF or NMP molecules, in addition to the fact that both solvents have a high boiling point and high surface tension, make their complete evaporation or removal very difficult. The presence of these residual molecules modifies the
PDF
Album
Review
Published 04 Dec 2014

Characterization of 10,12-pentacosadiynoic acid Langmuir–Blodgett monolayers and their use in metal–insulator–metal tunnel devices

  • Saumya Sharma,
  • Mohamad Khawaja,
  • Manoj K. Ram,
  • D. Yogi Goswami and
  • Elias Stefanakos

Beilstein J. Nanotechnol. 2014, 5, 2240–2247, doi:10.3762/bjnano.5.233

Graphical Abstract
  • (PDA) and their use in metal–insulator–metal (MIM) devices were studied. The Langmuir monolayer behavior of the PDA film was studied at the air/water interface using surface tension–area isotherms of polymeric and monomeric PDA. Langmuir–Blodgett (LB, vertical deposition) and Langmuir–Schaefer (LS
  • were characterized for suitability for small signal rectification in MIM tunnel diodes. The Langmuir monolayer behavior of PDA was studied at the air–water interface to find the ideal surface tension for a close-packed film at the water surface. This was followed by deposition of the film on silicon
  • (>99.8%, Sigma-Aldrich). Figure 1 shows the molecular structure and UV-polymerized structure of the PDA molecule. The pH value of the water subphase was found to be 6.8. Surface tension–area isotherms were obtained using the KSV NIMA Langmuir–Blodgett Trough system for samples with varying volume and
PDF
Album
Full Research Paper
Published 26 Nov 2014

Influence of stabilising agents and pH on the size of SnO2 nanoparticles

  • Olga Rac,
  • Patrycja Suchorska-Woźniak,
  • Marta Fiedot and
  • Helena Teterycz

Beilstein J. Nanotechnol. 2014, 5, 2192–2201, doi:10.3762/bjnano.5.228

Graphical Abstract
  • with Sn4+ ions, and then the precipitated nanoparticles are surrounded by a polymer, resulting in a polymer matrix which is formed on its surface (Figure 5). To facilitate this process, the corresponding change in the surface tension by the addition of a surfactant in the solution is required. To
  • showed that during the preparation of the tin dioxide nanoparticles (which result from the precipitation reaction), it is necessary to use both a polymer as well as a surfactant. This reduces the surface tension, making it easier to change the structure of the stabilising polymer chain. In addition, not
PDF
Album
Full Research Paper
Published 20 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • confirmed by investigation of the surface tension-driven flow leading to the Rayleigh–Taylor (R–T) instability. The R–T process has been concluded from coincidence between the droplet dimension (0.5 μm) obtained from the experiment and the model simulations, and with values of the Weber number as reported
  • coalescence both result in the formation of the NP structure. The final geometry and NP distribution depends on the surface tension forces at equilibrium characterized by a minimal ratio of the NP surface-area-to-volume [31]. The short-range order observed for structures in Figure 1a–c confirms the NP self
  • postulated how the NP shapes depend on the equilibrium of the surface tension forces [34]. The partially spherical/spheroidal shapes correspond to the case of partial wetting of the substrate by the molten metal and are characterized by a contact angle value of less than 90°. This angle approaches 180° in
PDF
Album
Review
Published 13 Nov 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • coupling. The melting of materials along the ion trajectory generates a surface tension gradient due to an imbalance of the surface and the interface energies, which further gives rise to mass transport through capillary action. The migration of metallic atoms and subsequent agglomeration can result in the
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Surface topography and contact mechanics of dry and wet human skin

  • Alexander E. Kovalev,
  • Kirstin Dening,
  • Bo N. J. Persson and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1341–1348, doi:10.3762/bjnano.5.147

Graphical Abstract
  • regions covered by water is described by where γ is the surface tension of water. If ΔA is the surface area occupied by the capillary bridges then the attractive force is The contact area and the distribution of interfacial separations are determined by using the Persson contact mechanics model with the
PDF
Album
Full Research Paper
Published 22 Aug 2014

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • , undeformable disk and substrate with a mediating continuous fluid-layer (see Figure 2 and [30][38][39][40][41][42]). In this simple model, the total adhesive force is basically the sum of three components: the surface tension of the fluid, the Laplace pressure (both often combined as “capillary forces”) and
  • mediating fluid volume should decline over time. In a static adhesive pad with a Newtonian fluid, only the (negligible) surface tension and the small Laplace pressure would thus determine the overall adhesive force of the insect foot (Table 1). Fluid-mediated friction forces In a fluid mediated system with
  • a continuous Newtonian fluid film, the friction forces between the substrates can in general be described by using two basic principles: the surface tension of the mediating fluid and the laws of hydrodynamic lubrication [55][56]. Surface tension The contribution of the surface tension of the
PDF
Album
Video
Review
Published 28 Jul 2014

Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

  • Andreas Landefeld and
  • Joachim Rösler

Beilstein J. Nanotechnol. 2014, 5, 1066–1070, doi:10.3762/bjnano.5.118

Graphical Abstract
  • also limited by the surface tension of the cast-material. Some complex three dimensional shapes were realized by casting of metal with a low melting temperature [3][4]. Dimensions of cast details are in the submillimeter- and microscale, and due to the mentioned limitations, applications in the
PDF
Album
Supp Info
Letter
Published 16 Jul 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • section, a summary and an outlook are provided. Review 1 Contact angle and contact angle hysteresis with applied voltage When a voltage is applied to a droplet deposited on a solid surface, the surface tension between solid and liquid changes, which leads to a change of the wettability of the surface, the
  • so called electrowetting [10][11][64][65]. The surface tension between solid and liquid decreases with increasing applied voltage, leading to a decrease of the CA. The change of the CA with the applied voltage V can be expressed by the Young–Lippmann equation [64][66] as: where θ0 is the original CA
  • in the absence of an voltage, C is the capacitance of the dielectric layer, and γlv is the surface tension between liquid and vapor. In 1875, Lippmann found the electrowetting phenomenon and presented the Young–Lippmann equation, which is acknowledged as the basic of the electrowetting theory. In
PDF
Album
Review
Published 15 Jul 2014
Other Beilstein-Institut Open Science Activities