Search results

Search for "time domain" in Full Text gives 87 result(s) in Beilstein Journal of Nanotechnology.

Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

  • Nikita Arnold,
  • Boyang Ding,
  • Calin Hrelescu and
  • Thomas A. Klar

Beilstein J. Nanotechnol. 2013, 4, 974–987, doi:10.3762/bjnano.4.110

Graphical Abstract
  • dominates, irrespectively of the power of (a/λ) associated with it. Some of the higher modes may dominate simply because they best match the spectral bandwidth of the gain media. Numerical Here we summarize several subtleties, crucial for reliable simulations. Conventional finite difference time domain
PDF
Album
Full Research Paper
Published 30 Dec 2013

Controlling the near-field excitation of nano-antennas with phase-change materials

  • Tsung Sheng Kao,
  • Yi Guo Chen and
  • Ming Hui Hong

Beilstein J. Nanotechnol. 2013, 4, 632–637, doi:10.3762/bjnano.4.70

Graphical Abstract
  • conducted by the finite-difference-time-domain (FDTD) method (FDTD Solutions 8.5, Lumerical Inc.) with realistic material parameters and Joule loss factors [16][17]. The simulation model was established and is shown in the schematic diagram Figure 1. This near-field energy controllable system consists of
PDF
Album
Full Research Paper
Published 09 Oct 2013

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • measured at the parts of the surface with high stiffness (DMT). In contrast, a peak current (Figure 6f) was present in this area. The peak current signal gives the current flow at maximal pressure of the AFM tip (Δt ≈ 0.001 s). In this time domain, transient (capacitive) currents can be detected and were
PDF
Album
Full Research Paper
Published 04 Oct 2013

k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy

  • Martin Esmann,
  • Simon F. Becker,
  • Bernard B. da Cunha,
  • Jens H. Brauer,
  • Ralf Vogelgesang,
  • Petra Groß and
  • Christoph Lienau

Beilstein J. Nanotechnol. 2013, 4, 603–610, doi:10.3762/bjnano.4.67

Graphical Abstract
  • several tens of microns on the surface of a gold taper [11]. These results have been confirmed by three-dimensional finite difference time domain (FDTD) simulations [11]. These theoretical investigations and experimental demonstrations suggest that pump–probe studies employing adiabatic nanofocusing are
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2013

Mapping of plasmonic resonances in nanotriangles

  • Simon Dickreuter,
  • Julia Gleixner,
  • Andreas Kolloch,
  • Johannes Boneberg,
  • Elke Scheer and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2013, 4, 588–602, doi:10.3762/bjnano.4.66

Graphical Abstract
  • approximation (DDA) or finite-difference in the time-domain (FDTD). Secondly, the outcome of these simulations has to be compared to a measurement of the field distribution. Since the field enhancement can be highly confined, direct probing of the field distribution is rather challenging. Experimental
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2013

3D nano-structures for laser nano-manipulation

  • Gediminas Seniutinas,
  • Lorenzo Rosa,
  • Gediminas Gervinskas,
  • Etienne Brasselet and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2013, 4, 534–541, doi:10.3762/bjnano.4.62

Graphical Abstract
  • were fitted from the experimental values obtained in literature, by means of a built-in polynomial model. The finite-difference time-domain (FDTD) included a section of the substrate, enclosed in all directions by perfectly matched layers (PML) to avoid spurious reflections. The central area of 5×5
PDF
Album
Full Research Paper
Published 17 Sep 2013

Polynomial force approximations and multifrequency atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 352–360, doi:10.3762/bjnano.4.41

Graphical Abstract
  • File 1) visualizing the measurement. For four consecutive beats in the time domain the corresponding amplitude spectrum around the first resonance is displayed in Figure 2b where the components or partial spectrum used for force reconstruction are marked with red circles. The polynomial force
  • attractive force regime due to the van der Waals forces between the tip and the surface is reached. In this regime new frequency components appear in the motion spectrum, so-called intermodulation products. Note that in the time domain, the distortion of the signal is barely visible. Both polynomial and ADFS
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2013

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

  • Daniel Platz,
  • Daniel Forchheimer,
  • Erik A. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2013, 4, 45–56, doi:10.3762/bjnano.4.5

Graphical Abstract
  • narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the
  • [33] are possible by analysis of the data in the frequency domain. Here, we consider the meaning of the narrow-band intermodulation response comb in the time domain, which leads to a physical interpretation of the intermodulation spectrum in terms of the in-phase force component FI and the quadrature
  • force component FQ. Results and Discussion Time-domain interpretation of narrow-band frequency comb Figure 2a portrays the amplitudes of the components of a narrow-band frequency comb. Whereas we only plot the amplitude of each component, it is understood that each component also has a phase. The
PDF
Album
Full Research Paper
Published 21 Jan 2013

Wavelet cross-correlation and phase analysis of a free cantilever subjected to band excitation

  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2012, 3, 294–300, doi:10.3762/bjnano.3.33

Graphical Abstract
  • time domain and thus the best time–frequency resolution. The temporal parameter t in the expression of the Gabor wavelet can be regarded as a (dimensionless) discrete index and likewise σ and η are dimensionless wavelet parameters defining the wavelet shape over the discrete sampling string. The Gabor
  • interaction spectra in the time domain. The spectral components acquire an interaction causality that is absent in the Fourier spectrum, revealing the time succession in which the phase or the amplitude at a specified frequency has been altered by the interaction. In certain cases this information may be of
PDF
Album
Full Research Paper
Published 29 Mar 2012
Graphical Abstract
  • substrate [24]. Another approach contrasting with the frequency-domain measurement is a time-domain measurement in which the time-dependent response to a stress pulse or step is analyzed [28]. Implementation of a simple step-response measurement based on AFM was exemplified previously [25]. In this
PDF
Album
Full Research Paper
Published 19 Mar 2012

Distinction of nucleobases – a tip-enhanced Raman approach

  • Regina Treffer,
  • Xiumei Lin,
  • Elena Bailo,
  • Tanja Deckert-Gaudig and
  • Volker Deckert

Beilstein J. Nanotechnol. 2011, 2, 628–637, doi:10.3762/bjnano.2.66

Graphical Abstract
  • -dimensional finite-difference time domain (3D-FDTD) simulations [20]. A metal substrate such as gold provides an additional field enhancement as it produces a large electromagnetic (EM) coupling with the tip, which is often called a “gap mode”. In contrast, dielectric materials cannot couple as effectively
PDF
Album
Full Research Paper
Published 23 Sep 2011

Tip-sample interactions on graphite studied using the wavelet transform

  • Giovanna Malegori and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2010, 1, 172–181, doi:10.3762/bjnano.1.21

Graphical Abstract
  • of the phase ω(t) = φ'(t) (the black line in Figure 3b). Since FT is a time invariant operator, only an average of the time dependent spectrum is observed (Figure 3c). On the other hand, CWT approach combines the time domain and frequency domain analysis so that the evolution of each spectral
  • time/frequency resolution, η the carrier frequency. Since the intrinsic time-frequency resolution in CWT is set by the atoms over which the signal is expanded, we chose this wavelet because it is particularly adapted to follow signals in time, having the least spread in both frequency and time domain
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities