Search results

Search for "UV" in Full Text gives 813 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • molecules by UV light irradiation. In the process, a cycloaddition reaction occurred between one nearby C60 molecule adsorbed on the surface and the most frontal part of the polydiacetylene molecular skeleton. As a result, nanojunctions were created. Scanning tunneling microscopy proved that the C60
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • resonances in the UV–vis–IR part of the electromagnetic spectrum are especially researched on for PT applications [13], with excellent reviews on materials for mid-IR applications [14], cancer treatment [15], antibacterial research [16], solar-driven vapour evaporation [16], solar collectors [11][17][18
  • incident radiation from the sun, 8% UV, 42.4% visible light, and 49.6% infrared radiation reach the earth's surface. Applications such as steam generation from solar power can evidently benefit from the use of materials that can absorb as much as possible of the entire spectrum of solar radiation. In this
  • , specifically in the UV–vis range (as infrared is already applied for heating), efficient of conversion of the absorbed energy into heat (in contrast to scattering), chemical and physical stability of the nanoparticles (e.g., against agglomeration), ease of synthesis, and low cost. Coinage metals, such as Au
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • characterization of quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles (Ch/Q- and Ch/CA-Ag NPs), and their antibacterial and anticancer activities. The formation of Ch/Q- and Ch/CA-Ag NPs has been confirmed by ultraviolet–visible (UV–vis) spectroscopy, Fourier-transform
  • colloidal core Ag NPs, was confirmed by UV–vis, and FTIR analyses, and monitored by TEM microscopy. The size of nanoparticles has been determined as 11.2 and 10.3 nm for Ch/Q- and Ch/CA-Ag, respectively. The anticancer activity of Ch/Q- and Ch/CA-Ag NPs has been evaluated against U-118 MG (human
  • first time the one-pot synthesis of Ch/Q- and Ch/CA-Ag NPs and their biological properties (anticancer and antibacterial). Ag NPs have been prepared and characterized by UV–vis, FTIR, and TEM measurements. In another study of ours, Lomustine, a common drug against glioblastoma cancer, was applied at a
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • may arise from strong associations between carrier and payload [57]. Without careful deconvolution, the scattering signal from a particulate analyte can readily result in a high bias that compromises UV–vis-based analyses. Ambiguity can further be enhanced in fluorescence assays because of the
  • escape. NAT are difficult to quantify if encapsulated into NP delivery carriers. The most common forms of nucleic acid measurement (i.e., UV–vis and fluorescence) provide limited insights for the characterization of NP-encapsulated NATs. Labeling and destructive methods both have drawbacks, ranging from
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • were functionalized with the monoclonal antibody F19 via carbodiimide conjugation. This approach enabled the use of ethyl cellulose nanoparticles in bioanalytical applications with the aim to detect Yersinia pestis from direct agglutination tests. Irradiation of nanoparticles under UV light favored
PDF
Album
Review
Published 13 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • layer of the structure more quickly than those in a 3-D structure. It is important to note that an effective photocatalyst should have the following properties: (a) strong absorption both of UV and visible light (i.e., a suitable bandgap value, usually less than 3.0 eV); (b) thermal, chemical, and
  • pH value of the effluent, the dosage of the photocatalyst, the initial concentration of the target pollutant, the dosage of oxidants, and the type of light source. To lower the overall cost of water treatment, the photocatalyst must be effective under all types of light, including direct sunlight, UV
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • combination with NH3. The reaction kinetics were monitored via measuring the optical density (OD) with UV–vis spectroscopy and the conversion of substrate via gas chromatography coupled with mass spectroscopy (GC–MS). Size and net surface charge distribution of the particles were determined with dynamic light
  • scattering (DLS). The efficiency of the self-assembly was evaluated with scanning electron microscopy (SEM), UV–vis spectroscopy, and qualitative visual demonstration. Results and Discussion SiBP alone as catalyst Reaction kinetics were studied via OD measurements of the particles and GC analysis of
  • -assembly of the particles The effect of the SiBP on the self-assembly of the as-grown particles was investigated via SEM and UV–vis spectroscopy. Single-layer and multilayer assemblies were investigated by using different dilutions of the as-synthesized particles. SEM imaging showed that the particles from
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • nanoarchitectures through the isomerization of azobenzene Azobenzene isomerizes upon UV irradiation (around 300 nm) from the trans form to the cis form [47]. The reverse isomerization (from cis to trans) is accomplishable by light with longer wavelength (e.g., 400 nm). This isomerization is a notable structural
  • units [48]. Prior to photoirradiation, azobenzene takes the trans form, and is included into the cavity of α-CyD to form nanoparticles. Upon irradiation with UV light, however, azobenzene isomerizes to the cis form, leading to the breakdown of the inclusion complex with α-CyD. Thus, the nanoparticles
  • endogenous glutathione, which is abundant in the cells. Upon UV irradiation, however, azobenzene isomerizes from the trans form to the cis form and spontaneously dissociates from β-CyD. As a result, the disulfide linkage becomes more exposed and is reductively cleaved by glutathione. Thus, the mesopore is
PDF
Album
Review
Published 09 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • -dependent spectral absorbance of GNSs of 40 nm diameter and GNRs with sizes of 25 × 47 nm, 10 × 38 nm, and 10 × 41 nm measured by using a UV–vis spectrophotometer (UV-3200, Labindia Instruments Pvt. Ltd.) is shown in Figure 4. The measured peak absorbance wavelength of the GNPs is in agreement with the
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • nm (Figure S1c,d in Supporting Information File 1). Figure 1 shows the surface morphology of neat PU and a CQDs/PU sample. The RMS roughness values of these samples are 4.45 and 14.04 nm, respectively. FTIR, UV–vis, and PL spectra of CQDs and CQDs/PU To study the chemical and optical properties of
  • CQDs, FTIR, UV–vis, and PL spectra were measured. A FTIR spectrum of the CQDs is presented in Figure S2a (Supporting Information File 1). The spectrum contains many peaks associated with the following bonds: Peaks at 3634 and 3448 cm−1 stem from O–H stretching vibrations. A peak at 3367 cm−1 could be
  • CQDs prepared from o-phenylenediamine showed the presence of sp2 domains predominantly in the carbon core structure of the CQDs, which contributed to the formation of polyaniline fluorophores [31]. Figure S2b (Supporting Information File 1) shows a UV–vis spectrum of CQDs. We can observe that the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • photoinduced approach was investigated for textile functionalization with a silver@polymer self-assembled nanocomposite. By exposing the photosensitive formulation containing a silver precursor, a photoinitiator, and acrylic monomers to a UV source, highly reflective metallic coatings were obtained directly on
  • photosensitive formulation was applied to a cotton textile with an abyko-drive applicator (calibrated bar coater). The resulting smooth sample was then irradiated under UV light (600 mW/cm2) to obtain the final Ag@polymer textile material, with a coating thickness of 100 µm, measured with a Mitutoyo digital
  • micrometer. Figure 1 shows images of the as-synthesized samples with and without AgNPs for the PEG600DA polymer and PEG600DA/PETIA copolymer matrixes coated onto cotton fabric. Optical and morphological properties UV–vis spectroscopy was initially carried out on glass-coated Ag@PEG600DA or Ag@PEG600DA/PETIA
PDF
Album
Full Research Paper
Published 12 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • roughness of the bilayer structure were studied utilizing an atomic force microscope (AFM, Bruker Dimension Edge) and the Gwyddion software. The optical transmission was measured using an UV–vis spectrophotometer (UV-3600i Plus, SHIMADZU) in the range of λ = 300–800 nm. Finally, the electrical properties
PDF
Album
Full Research Paper
Published 28 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • stabilizing agent for aqueous SWCNT dispersions The UV–vis–NIR spectrum of CoMoCat SWCNT/riboflavin dispersion obtained by mild sonication reveals the distinctive S11 and S22 transitions of (6,4)- and (6,5)-SWCNTs, as well as other resolved optical transitions of nanotubes (Figure 1a). Notably, Van Hove
  • an average diameter of 1.5 nm. The set of chiralities present in CoMoCat demonstrates a high affinity towards riboflavin, leading to a high riboflavin density on the SWCNT surface. As a result, we do not observe significant changes in UV–vis–NIR spectra or photoluminescence of dispersions before and
  • ) reveals almost single (6,5)-chiral SWCNTs with traces of (7,3)-SWCNTs, which is in agreement with the UV–vis–NIR spectrum. Ab initio calculations of riboflavin binding to SWCNTs Papadimitrakopolous et al. showed that flavin mononucleotide selectively binds to (8,6)-nanotubes resulting in the formation of
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • ability. (i) TNAs only respond to ultraviolet (UV) light [22][23][24], and (ii) they exhibit fast carrier recombination [25]. Recently, the development of new heterojunction architectures through coupling TNAs with other semiconductor materials, especially low-bandgap semiconductors, led to a reduction of
  • electrodes were a Pt counter electrode, a Ag/AgCl 3 M reference electrode, and a MoS2/TNAs or g-C3N4/TNAs working electrode in a 1 M Na2SO4 (pH 7.4) electrolyte solution. The light source used in this study was a 150 W Xe lamp (ABET Instruments) with a calibrated luminous intensity of 100 mW·cm−2 and a UV
  • at 393 nm. This means that TNAs are only activated by near-UV irradiation. In contrast, the g-C3N4 sample shows an absorption edge at 464 nm. Meanwhile, MoS2 exhibits strong absorption from the UV region extending to the entire visible-light region. It can be seen that the loading of both MoS2 and g
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • SEM, X-ray diffraction, and ultraviolet–visible (UV–vis) analysis. The XRD and UV–vis results were published in our previous article [17]. We present this data again in this article as it is necessary for the discussion of the results. Zeta potential measurements were also presented in another
  • with a Cu Kα powder diffractometer (D8 Advance, Bruker, Ettlingen, Germany) operating at 40 kV and 36 mA (λ = 0.154056 nm). The optical characterization of the catalysts was performed by using a spectrophotometer (Cary Series UV-Vis-NIR, Agilent Technologies) in the wavelength range of 190–800 nm
  • up to 1h). The organic compound concentrations were evaluated by using HPLC. Analysis Changes in phenol concentration were determined by a high-performance liquid chromatography system (Shimadzu, Japan) equipped with a UV detector (SPD-10AV) and a C18 column (Knauer 250 × 4.6 mm, Eurospher II 100-5
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • reactions. As a wide-bandgap (ca. 3.2 eV) semiconductor, TiO2 is a promising photocatalyst for degrading a massive range of high-molecular-weight organic pollutants under UV radiation [1]. Because of high specific surface, nanoscale TiO2 as grains or tubes can absorb UV light more substantially than
  • the photocatalytic performance [4][5]. Because TiO2 only exhibits photochemical activity under UV excitation, which accounts for a small fraction (ca. 4%) of the solar energy, numerous modification methods such as doping with nonmetals, coupling with other catalysts, and attaching to supports have
  • evolution of 450 µmol·h−1. Reddy et al. loaded TiO2 particles on MWCNTs via a simple hydrothermal method [13]. However, the MWNTs/TiO2 nanocomposite showed photoactivity only under UV irradiation due to the high bandgap of 3.1 eV. To the best of our knowledge, there are only a few studies on TiO2@MWCNTs
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • pineapple peel extracts and their behavior on the breast cancer cell line MCF-7 is shown. Bioreactions were monitored at different temperatures. Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy
  • give rise to a collective oscillation known as surface plasmon effect [34]. This effect can be monitored by UV–vis spectroscopy, where metal nanoparticles absorb radiation at different wavelengths depending on their size [36]. The UV–vis absorption spectra of the reactions at different temperatures are
  • nanoparticles as a function of temperature, the micrographs obtained by TEM in Figure 6 show different behaviors both in size and shape of the nanoparticles with respect to temperature. These results are consistent with UV–vis spectra shown in Figure 4, where each curve has a different maximum depending on the
PDF
Album
Full Research Paper
Published 13 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • scanning electron microscopy and structural characteristics were analysed by using energy-dispersive X-ray, UV–vis, and Fourier-transform infrared spectroscopy. The electrochemical characteristics of the modified electrodes were studied by cyclic voltammetry, differential pulse voltammetry (DPV), and
  • . UV–vis spectra were used to determine the presence of Gr and AuNPs/Gr in the composite. From the image (Figure 2e), Gr has a peak at 262 nm, which has been shifted to 256 nm (Figure 2e) in the composite, possibly due to interactions between AuNPs and Gr. Additionally, the distinct peak at 516 nm in
  • Oxford Instrument energy dispersive X-ray spectrometer. UV–vis was performed on a Libra S80 Biochrom spectrophotometer and FTIR was performed on a Spectrum 400 PerkinElmer spectrometer (U.S.). Electrochemical studies of the electrodes The electrochemical behaviour of different modified SPCE surfaces was
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • –visible (UV–vis) absorption spectra were measured with an UV–vis spectrometer (Q-5000, Quawell, America). The amounts of BDP in AB-LNPs were analyzed using UV–vis spectroscopy after the dissolution of AB-LNPs in DMSO by measuring the absorbance at a wavelength of 600 nm. The loading efficiency (LE, %) was
  • taken out to measure the amount of the released drug by UV–vis spectroscopy, and an equal volume of fresh release medium was added to keep the volume constant. Photothermal measurement for AB-LNPs To study the photothermal properties of AB-LNPs, different concentrations of AB-LNPs with BDP
  • in H2O. The binding of hydrophobic BDP onto Au-LNPs might affect the light absorption of Au nanoclusters. The loading efficiency of BDP in AB-LNPs determined by using UV–vis measurements (λex = 600 nm) is 51 ± 1.2% (n = 3). A TEM image of AB-LNPs is shown in Figure 1c. Particles with diameters of ca
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • NPs and CS/DCX-PLGA NPs through an artificial mucus layer In order to evaluate the penetration capability of NPs, wells containing artificial mucus layer were treated with DCX-loaded NP formulations. Subsequently, NPs that had penetrated the mucus layer and moved into gelatin were measured using UV
  • gold and palladium and inserted on metal stubs before being dried for a 24 h SEM analysis. Determination of encapsulation efficiency, drug loading and production yield The previously reported UV–vis spectrophotometric quantification method was used to determine the DCX encapsulation efficiency of the
  • of DCX was measured by UV spectrophotometry (Shimadzu UV-1800 UV–vis spectrophotometer, Shimadzu corporation, Japan) at 230 nm (λmax). Validation of the spectrophotometric method was carried out. Linearity, accuracy, precision, reproducibility, limit of detection (LOD), and limit of determination
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • crystallographic characterization. The morphology of the obtained nanostructures was captured by high-resolution transmission electron microscopy (HRTEM, Talos F200X G2, Thermo Scientific). The optical properties were characterized with a Shimadzu UV 2600 UV–vis spectrophotometer with an integrating sphere
  • photolysis of H2O2. Aliquots were drawn at regular intervals, ultracentrifuged at 7500 rpm, and then subjected to quantification of residual concentration of pollutants using a spectrophotometer (UV 2600 SHIMADZU, Japan). The intermediates formed during the photodegradation of phenol were analysed through a
  • with a zeta potential of −20 mV at a neutral pH. This implies that the surface of MBN-80 is negatively charged above pH 5.08 which results in better adsorptive ability towards positively charged pollutant moieties and vice-versa. Optical studies The UV–vis light harvesting characteristics (absorbance
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • -inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV–vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD
  • , Figure 1) achieved by supramolecular assembly of the components as well as their physicochemical characterization in terms of size and colloidal stability. The drug binding ability of nanoGS with Pent has been investigated by complementary spectroscopic techniques such as UV–vis, zeta potential (ζ
  • reduction of AgNO3. The formation of small gold NPs (Figure 2) was confirmed by the presence of the LSPR band detected at 531 nm in the UV–vis spectrum. The subsequent addition of AgNO3 resulted in a change of the extinction spectrum with the formation of a higher and broader absorption band at 402 nm
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • JSM-7600F. The electronic states of the elements and their atomic ratio in the prepared samples was analyzed by using XPS (Kratos AXIS Ultra DLD) and EDX (Bruker Nano XFlash detector attached to the HRTEM). Optical properties were examined by using a UV–vis–NIR spectrophotometer (Perkin Elmer L-650 UV
  • ]. The elemental Se spectrum (Figure 3f) shows the peaks of Se 3d5/2 (55.65 eV) indicating the existence of Se2− ions [27][29] .This result confirms that the synthesized QDs contain Zn2+, Ag+, Ga3+, S2− and Se2− ions forming I-II-III-VI3-type AgZnGaS1.5Se1.5 QDs. Optical studies The UV–vis absorbance
  • prove the incorporation of AZGSSe QDs in the TiO2 NFs. The UV–vis absorption spectrum of the AZGSSe/TiO2-based photoanode in comparison with TiO2 NFs shown in Figure 6a. It can be observed that AZGSSe/TiO2-based photoanode has a light absorption in the NIR region. This signifies that AZGSSe/TiO2 is an
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • obtained. They found that Bi5O7Br effectively converts molecular oxygen to superoxide radicals and hydroxyl radicals in visible light. Under UV–vis irradiation, Bi5O7Br showed a higher photocatalytic activity in the degradation of rhodamine B (RhB) dye than BiOBr. The addition of Bi5O7Br photocatalysis to
  • the Bi–O–X photocatalytic system improved the system. In this work, they found that the RhB elimination percentage over Bi5O7Br is 85% after 120 min of UV–visible-light irradiation, and the reaction rate constant was measured as 1.496 h−1·m−2. In contrast, the reaction rate constant for BiOBr was
  • . The sample calcinated at 750 °C revealed the highest photocatalytic performance. Hamza et al. fabricated Bi2(CrO4)3 nanoparticles via a facile precipitation technique [59]. The photocatalytic activity of the Bi2(CrO4)3 nanoparticles was studied under UV, AM 1.5, and visible-light irradiation, and
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • prepared colloidal gold was identified by transmission electron microscopy and UV spectrophotometer for size and uniformity. The amount of colloidal gold-labeled HBsAg Mab protein was determined by the CVAI curve; the probe was identified by spot immunosorbent assay. The prepared 15 nm colloidal gold
  • particles were homogeneous; the maximum absorption wavelength was 518 nm with narrow peak width in the UV spectrophotometer 400–700 nm scan; the purified HBsAg Mab concentration was 65 mg/mL; the optimal protein protection amount was 32.5 μg per mL of colloidal gold at pH 8.2; the quality of the probe was
PDF
Album
Review
Published 03 Nov 2022
Other Beilstein-Institut Open Science Activities