Search results

Search for "accelerating voltage" in Full Text gives 155 result(s) in Beilstein Journal of Nanotechnology.

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • spectroscopy (EELS) were performed using a Nion UltraSTEM 100 which is equipped with aberration correction of the probe forming lens. Beam-induced damage and contamination were minimized by using an accelerating voltage of 60 kV and a 40 pA beam current. High angle annular dark field (HAADF) and bright field
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • reduction tube at 850 °C. Sulfanilamide C6H8N2O2S was used as CHNS standard. For SEM studies with a JSM-6060LA analytical scanning electron microscope (Jeol, Tokyo, Japan) using secondary electrons at an accelerating voltage of 30 kV, the samples were fixed on the objective tables. To prevent the
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Nanoscale isoindigo-carriers: self-assembly and tunable properties

  • Tatiana N. Pashirova,
  • Andrei V. Bogdanov,
  • Lenar I. Musin,
  • Julia K. Voronina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Vladimir F. Mironov,
  • Lucia Ya. Zakharova,
  • Shamil K. Latypov and
  • Oleg G. Sinyashin

Beilstein J. Nanotechnol. 2017, 8, 313–324, doi:10.3762/bjnano.8.34

Graphical Abstract
  • ) Transmission electron microscopy (TEM) images were obtained using a microscope Hitachi HT7700, Japan. The images were acquired at an accelerating voltage of 110 kV. Samples were dispersed on 300 mesh copper grids with continuous carbon-formvar support films. In vitro stability of SIPs The SIP sample (5 mL) was
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • vacuum chamber at a temperature of 560–580 °C allowed us to get rid of a protective oxide layer and the impurities accumulated in it. The accelerating voltage determining the ion energy varied in the range from 100 to 500 V. The energy dependence of the sputtering yields was measured with a step of 50 eV
PDF
Album
Full Research Paper
Published 03 Jan 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • using the STAR software from Mettler Toledo. The transmission electron microscopy (TEM) images were taken using a dedicated HITACHI HT7700 microscope operating in high contrast mode at 100 kV accelerating voltage. The samples were prepared by placing small droplets of the diluted dispersion (≈1 g/L) of
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials

  • Konstantin A. Kurilenko,
  • Oleg A. Shlyakhtin,
  • Oleg A. Brylev,
  • Dmitry I. Petukhov and
  • Alexey V. Garshev

Beilstein J. Nanotechnol. 2016, 7, 1960–1970, doi:10.3762/bjnano.7.187

Graphical Abstract
  • 200 MC, Carl Zeiss) at an accelerating voltage of 200 kV and a magnification of 30,000–300,000×. The X-ray photoelectron spectra were acquired with a Kratos Ultra DLD spectrometer using a monochromatic Al Kα X-ray source that possesses an analysis area of 300 μm × 700 μm. The spectra were recorded in
PDF
Album
Full Research Paper
Published 09 Dec 2016

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • -probe X-ray microanalysis with a Tescan Vega TS5130 MM scanning electron microscope (SEM) equipped by energy dispersive X-ray spectrometer (Oxford Instruments). TEM studies were performed using JEM-4000FX microscope at an accelerating voltage of 400 kV. X-ray diffraction (XRD) was studied using a
PDF
Album
Review
Published 07 Dec 2016

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • accelerating voltage of 10 kV. The same SEM system was used for visualization of the morphology of the layers and of the cross-section of the solar cells at an electron beam accelerating voltage of 4 kV. Current–voltage scans of the solar cells were used to obtain the principal characteristics of the solar
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction

  • Silu Liu,
  • Xiaolong Ma,
  • Lingzhen Li,
  • Liwen Zhang,
  • Patrick W. Trimby,
  • Xiaozhou Liao,
  • Yusheng Li,
  • Yonghao Zhao and
  • Yuntian Zhu

Beilstein J. Nanotechnol. 2016, 7, 1501–1506, doi:10.3762/bjnano.7.143

Graphical Abstract
  • /C2H5OH/H2O. TKD characterization was conducted in a Zeiss Auriga SEM operating with a 30 kV accelerating voltage. The measurement step size was set to 6 nm for the microscopic observation, taken into consideration the heavily deformed state and other factors. All misindexed points and unindexed pixels in
PDF
Album
Full Research Paper
Published 24 Oct 2016

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • DNA origami. Transmission electron microscopy TEM images of the DNA structures were taken with a Zeiss Libra 200MC operated at an accelerating voltage of 200 kV and performed on copper/formvar/carbon grids (400 mesh, 3.05 mm diameter, Plano GmbH). Before deposition, the grids were glow discharged for
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • surface of the carbon film. The particles were dried at room temperature for more than 1 h, and TEM micrographs were obtained at an accelerating voltage of 120 kV by Tecnai Spirit G2 (FEI, Brno, Czech Republic). Bright field imaging (BF) and selected area electron diffraction (SAED) were used to visualize
PDF
Album
Full Research Paper
Published 27 Jun 2016

Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

  • Morten Slyngborg,
  • Yao-Chung Tsao and
  • Peter Fojan

Beilstein J. Nanotechnol. 2016, 7, 914–925, doi:10.3762/bjnano.7.83

Graphical Abstract
  • microscopy SEM measurements of the ECM surfaces were done in high vacuum (1·10−6 mbar) and an accelerating voltage 10 kV using a Zeiss 1540XB system and standard procedure. The samples were coated by 2 nm gold as to prevent a buildup of static charge. CD spectroscopy measurements The ECMs were compatible
PDF
Album
Full Research Paper
Published 24 Jun 2016

Frog tongue surface microstructures: functional and evolutionary patterns

  • Thomas Kleinteich and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 893–903, doi:10.3762/bjnano.7.81

Graphical Abstract
  • carbon-containing double-sided adhesive tape. The specimens were then coated with a 10 nm gold–palladium layer by using a Leica SCD05 Sputter Coater (Leica Microsystems GmbH, Wetzlar, Germany). For scanning electron microscopy, we used a Hitachi S-4800 scanning electron microscope at an accelerating
  • voltage of 3 kV (Hitachi High-Technologies Europe GmbH, Krefeld, Germany). We used micro-computed tomography (micro-CT or µCT) to study the three-dimensional arrangement of tissues underneath the tongue surface. To visualize soft tissue structures, such as the epithelium and muscle fibers, we stained the
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2016

Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

  • Tianyu Xiang,
  • Feng Xin,
  • Jingshuai Chen,
  • Yuwen Wang,
  • Xiaohong Yin and
  • Xiao Shao

Beilstein J. Nanotechnol. 2016, 7, 776–783, doi:10.3762/bjnano.7.69

Graphical Abstract
  • electron microscope (SEM) with an accelerating voltage of 3.0 kV. The surface composition of the catalysts was investigated using a Thermo Scientific energy dispersion X-ray (EDX) fluorescence analyzer (with a Mg Kα ADES (hν = 1253.6 eV) source) as an addition to the SEM and XPS (PHA-5400, SPECS, America
PDF
Album
Full Research Paper
Published 01 Jun 2016

Bacteriorhodopsin–ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour

  • Saurav Kumar,
  • Sudeshna Bagchi,
  • Senthil Prasad,
  • Anupma Sharma,
  • Ritesh Kumar,
  • Rishemjit Kaur,
  • Jagvir Singh and
  • Amol P. Bhondekar

Beilstein J. Nanotechnol. 2016, 7, 501–510, doi:10.3762/bjnano.7.44

Graphical Abstract
  • scanning electron microscope (SEM, Hitachi) with an accelerating voltage of 5–15 kV. The film thickness was measured using a surface profilometer in contact mode (Taly-surf PGI 120). Raman and optical spectral analysis The optical absorption spectra of all the nanostructures were recorded using a UV–vis
PDF
Album
Full Research Paper
Published 04 Apr 2016

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • as the wavelength of radiation and with D as an average of the crystallite size. Scanning electron microscopy Micrographs were taken with a DSM 982 Gemini (Zeiss). An accelerating voltage of 3 kV and a working distance of 2–3 mm were used. To ensure conductivity, the samples were sputtered with a 0.8
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

  • Alexander G. Milekhin,
  • Larisa L. Sveshnikova,
  • Tatyana A. Duda,
  • Ekaterina E. Rodyakina,
  • Volodymyr M. Dzhagan,
  • Ovidiu D. Gordan,
  • Sergey L. Veber,
  • Cameliu Himcinschi,
  • Alexander V. Latyshev and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2015, 6, 2388–2395, doi:10.3762/bjnano.6.245

Graphical Abstract
  • Raith-150 system at 10 kV acceleration voltage, 30 µm aperture, and 6 mm working distance. The high-resolution transmission electron microscopy (HR-TEM) experiments were performed using a JEM-400EX (JEOL) electron microscope with an accelerating voltage of 400 keV. The point resolution was 0.165 nm. The
PDF
Album
Full Research Paper
Published 14 Dec 2015

Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

  • Akbar Rostami-Vartooni,
  • Mohammad Alizadeh and
  • Mojtaba Bagherzadeh

Beilstein J. Nanotechnol. 2015, 6, 2300–2309, doi:10.3762/bjnano.6.236

Graphical Abstract
  • by FE-SEM (Cam scan MV2300). The chemical composition of the modified bentonite was measured by EDX performed in a SEM. TEM images were obtained using a Philips-EM-2085 transmission electron microscope with an accelerating voltage of 100 kV. Nitrogen adsorption isotherms were performed on a
PDF
Album
Full Research Paper
Published 03 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • energy dispersive spectroscopy (EDX) were used to determine the morphology, crystal structure and elemental composition of the nanocrystals, respectively. All TEM micrographs, diffractograms and spectra were taken at an accelerating voltage of 120 kV. Particle size distribution was analyzed with the
PDF
Album
Full Research Paper
Published 03 Dec 2015

Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

  • Jing Wang,
  • Yongqi Fu,
  • Zongwei Xu and
  • Fengzhou Fang

Beilstein J. Nanotechnol. 2015, 6, 2069–2077, doi:10.3762/bjnano.6.211

Graphical Abstract
  • distribution on the electrodes. The energy spreading is asymmetrical and produces an elliptical spot of the ion beam instead of the normal circular spot. Theoretically, it can be expressed as Equation 1 [28]: where B is the magnetic field, q is the velocity of an ion, M is the mass, V is the accelerating
  • voltage, and Z is the mass selection size. In practice, this is sufficiently small to be removed by astigmators located downstream of the filter. The stigmation strongly depends on the fluctuation of voltage which generates the voltage variation δV. Theoretically, it will be sufficiently small as long as
PDF
Album
Full Research Paper
Published 26 Oct 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • QDs were determined using a JEOL JEM-100cx transmission electron microscope (TEM) with an accelerating voltage of 80 kV. The TEM image of Ag2S is shown in Figure 1a. The particles are estimated to have an average diameter of 5–6 nm. Figure 1a shows the absorption spectra of Ag2S QDs, measured by a
PDF
Album
Full Research Paper
Published 24 Aug 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • reduction of the resolving power. Using a multi-walled carbon nanotube (MWCNT) for demonstration, a high resolution TEM (HRTEM) image acquired at 200 kV using a conventional FEI Tecnai G2 microscope is shown in Figure 2a, where the spatial resolution is about 1.5 Å. When the accelerating voltage is lowered
  • Figure 3a [33]. More recent studies using molecular dynamics simulations based on tight-binding density functional theory [32] and first principle calculations [34] have agreed on a Td of 23 eV and 22 eV, respectively, corresponding to an accelerating voltage of about 110 kV using Equation 2. However
  • 100 keV. It has been suggested to study carbon-based nanostructures at low voltage in order to suppress knock-on damage (elastic collision), allowing for a damage-free study in both TEM and STEM. One may point out that a decrease of the accelerating voltage has the disadvantage of increasing the
PDF
Album
Review
Published 16 Jul 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • transmission electron microscopy (TEM) using a JEOL JEM 1400 microscope (Tokyo, Japan) at an accelerating voltage of 80 kV. The samples were deposited on copper grids (formvar/carbon on 400 mesh Cu from Agar Scientific) and negative-stained with 2% v/v uranyl acetate for 45 s. The grids were air-dried prior to
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Preparation of Ni/Cu composite nanowires

  • Hu Wang,
  • Xiaoyu Li,
  • Ming Li,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2015, 6, 1268–1271, doi:10.3762/bjnano.6.130

Graphical Abstract
  • and applications. The morphology of the samples was observed by field emission scanning electron microscopy (FE-SEM, JSM-7500F, JEOL) operating at 10 kV accelerating voltage, and energy dispersive spectroscopy (EDS) analysis was performed with the spectrometer attached to the same SEM. The composition
PDF
Album
Full Research Paper
Published 05 Jun 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • this image. Accelerating voltage: 30 keV, beam current: 0.3 pA. A schematic diagram of the incident and reflected ion paths with designations given in the text. Dependence of the reflection coefficient of 35 keV He+ on the grazing angle calculated with SRIM software for different materials. Designation
PDF
Album
Full Research Paper
Published 07 May 2015
Other Beilstein-Institut Open Science Activities