Search results

Search for "anode" in Full Text gives 176 result(s) in Beilstein Journal of Nanotechnology.

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • achieved in 1972 by Fujishima and Honda on a TiO2 anode and Pt cathode under ultraviolet (UV) light irradiation [6]. After this, research interest in exploring semiconductors for hydrogen production has grown significantly and many research groups have focussed their studies in this direction [7][8][9][10
  • as an anode and is connected to a Pt cathode. The photogenerated electrons reduce H+ ions to generate H2 on the Pt electrode while holes oxidize water to form O2 on TiO2 electrode, as illustrated in the Figure 4a. After this discovery, semiconductor-based materials with suitable band gaps have
PDF
Album
Review
Published 03 Aug 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • its rapid development in lithium-ion batteries (LIB). In order to improve the electrochemical performances of TiO2 nanomaterials as anode for LIB, hierarchically porous TiO2 nanofibers with different tetrabutyl titanate (TBT)/paraffin oil ratios were prepared as anode for LIB via a versatile single
  • −1 after 60 cycles at increasing stepwise current density from 40 mA·g−1 to 800 mA·g−1. Herein, hierarchically porous TiO2 nanofibers have the potential to be applied as anode for lithium-ion batteries in practical applications. Keywords: anode; hierarchically porous TiO2 nanofibers; lithium-ion
  • density [5][6][7][8]. So far, among all the commercial lithium-ion batteries, graphite plays an extremely important role in anode materials; nevertheless, structural deformation, electrical disconnection and the initial loss of capacity hinder its further development [9][10]. Titanium dioxide (TiO2) is
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • radiation, rotating anode, Bragg–Brentano scheme, graphite monochromator) diffractometer. XRD patterns and TEM images of different samples with varying AgCl amount: (a) AgCl_0, (b) AgCl_1, (c) AgCl_4, (d) AgCl_10, (e) AgCl_12 and (f) AgCl_40. (ZB: zinc blende, WZ: wurtzite.) HRTEM images of TP (sample
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • to the particular two-terminal setup [54] and electrode geometry but allow relative comparisons of the tested electrode materials. Figure 7 shows the current density resulting from a positive potential applied to the entire cell (anode + cathode) of 1.50 V. Both platinum coated electrode (PVD and
  • linear anode layer ion source (Veeco ALS 340, Fort Collins, CO, USA) was performed on the substrates. For the MoS2 deposition, the cathode was powered with a 10 kW DC power supply in power regulation mode. Pulse frequency of 80 kHz, pulse time 1 µs and power 150 W, power density ≈3.3 W·cm−2, was applied
PDF
Album
Full Research Paper
Published 22 May 2017

Fully scalable one-pot method for the production of phosphonic graphene derivatives

  • Kamila Żelechowska,
  • Marta Prześniak-Welenc,
  • Marcin Łapiński,
  • Izabela Kondratowicz and
  • Tadeusz Miruszewski

Beilstein J. Nanotechnol. 2017, 8, 1094–1103, doi:10.3762/bjnano.8.111

Graphical Abstract
  • were performed at room temperature under ultra-high vacuum conditions, below 1.1 × 10−8 mbar. The photoelectrons were excited with an Mg Kα X-ray source. The X-ray anode was operated at 15 keV and 300 W. An Omicron Argus hemispherical electron analyser with round aperture of 4 mm was used for analyzing
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • using two UHV apparatuses based on modified Leybold XPS systems with double-anode X-ray sources (Al Kα). The base pressure of the analyzing chambers amounted to 10−10 mbar. The samples were irradiated at normal incidence. The energy resolutions were 0.8 eV (in case of the Trp0S and Trp0Se samples) and
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • Nonius rotating anode instrument (4 kW, Cu Kα) with pinhole collimation and a MARCCD detector (pixel size: 79 μm). The distance between sample and detector was 74 cm, covering a range of the scattering vector s = 2/λ sin θ = 0.04–0.7 nm−1 (θ = scattering angle, λ = 0.154 nm). 2D diffraction patterns were
PDF
Album
Full Research Paper
Published 29 Mar 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • ) and therefore offers the possibility to fabricate a large variety of graphene–transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs
  • fields. Material property requirements for specific applications Graphite is commercially used as an anode material for LIBs due to its large lithium storage capacity of 372 mAh·g−1. However, this is not sufficient for applications requiring high energy capacity. Single layer graphene has a high
  • that the energy conversion efficiency of the photovoltaic devices that use TiO2 NPs critically depends on the morphology and size of the NPs [79][80]. Additionally, in TiO2–graphene hybrid systems, the morphology of TiO2 plays an important role in various applications. TiO2 anode materials have
PDF
Album
Review
Published 24 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • 510006, China Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Photoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China 10.3762/bjnano.8.69 Abstract Metall oxides have been proven to be potential candidates for the anode
  • /COOH-MWCNT composite is a potential anode material for lithium-ion batteries. Keywords: anode material; carbon nanotubes; hydrothermal synthesis method; lithium-ion batteries; Introduction The depletion of non-renewable energy resources such as coal, petrol and natural gas has led to the urgent need
  • vehicles and battery electric vehicles [1][2][3][4][5][6][7][8]. Graphite, is the most commonly used anode material for LIBs, has a theoretical specific capacity of 372 mAh·g−1 [9], which does not meet the requirements of hybrid electric vehicles. Thus, the development of next-generation batteries with low
PDF
Album
Full Research Paper
Published 17 Mar 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • directly decorate MWCNT-based gas sensors were prepared by the sacrificial anode electrolysis (SAE) method, as reported elsewhere [33][34]. The electrochemical synthesis was carried out with a three-electrode cell consisting of an Ag/AgNO3 (0.1 M in acetonitrile) electrode, used as reference, and the metal
  • , a gold or palladium sacrificial anode, used as the working electrode. A platinum cathode was used as the counter electrode. The electrolyte solution was composed of quaternary ammonium halide (0.05 M) dissolved in a 3:1 mixture of tetrahydrofuran and acetonitrile. Specifically, the quaternary
PDF
Album
Full Research Paper
Published 10 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • deposited layer was analysed with X-ray fluorescence (Rigaku, ZSX 400). The oxidation state of the deposited vanadium was also determined by X-ray fluorescence. The XPS spectra were acquired using a Scienta SES-100 spectrometer. The excitation source was a polychromatic twin-anode X-ray tube (Thermo, XR3E2
PDF
Album
Full Research Paper
Published 07 Mar 2017

Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

  • Massimiliano Lucci,
  • Ivano Ottaviani,
  • Matteo Cirillo,
  • Fabio De Matteis,
  • Roberto Francini,
  • Vittorio Merlo and
  • Ivan Davoli

Beilstein J. Nanotechnol. 2017, 8, 539–546, doi:10.3762/bjnano.8.58

Graphical Abstract
  • current density has been set while the potential difference (Vs) between cathode and anode in the electrolytic cell has been monitored simultaneously. The samples were anodized using different current bias and voltage compliance (Vc) to scrutinize the effects on the growth of NbN oxide. The cell has a
PDF
Album
Full Research Paper
Published 02 Mar 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • region. The pellets were heated in a furnace overnight at 423 K to minimize the amount of water adsorbed by the samples. X-ray diffraction (XRD) patterns were acquired at ambient temperature on a Siemens D-500 X-ray diffractometer with a copper rotating anode and a graphite monochromator to select the Cu
PDF
Album
Full Research Paper
Published 21 Feb 2017

Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

  • Tapas Ghosh and
  • Biswarup Satpati

Beilstein J. Nanotechnol. 2017, 8, 425–433, doi:10.3762/bjnano.8.45

Graphical Abstract
  • recent years, several CuO nanostructure syntheses and their applications have been reported. Different shaped CuO nanostructures such as nanowires, nanoplatelets, nanorods, and nanoflowers have been employed as the anode material for lithium ion batteries [4][5][6][7], and improved performance has also
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2017

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

  • Urmas Joost,
  • Andris Šutka,
  • Meeri Visnapuu,
  • Aile Tamm,
  • Meeri Lembinen,
  • Mikk Antsov,
  • Kathriin Utt,
  • Krisjanis Smits,
  • Ergo Nõmmiste and
  • Vambola Kisand

Beilstein J. Nanotechnol. 2017, 8, 229–236, doi:10.3762/bjnano.8.25

Graphical Abstract
  • measurements were conducted using a surface station equipped with an electron energy analyzer (SCIENTA SES 100) and a non-monochromatic twin anode X-ray tube (Thermo XR3E2), with characteristic energies of 1253.6 eV (Mg Kα1,2 FWHM 0.68 eV) and 1486.6 eV (Al Kα1,2 FWHM 0.83 eV). All XPS measurements were
PDF
Album
Full Research Paper
Published 24 Jan 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • , the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g
  • . Keywords: in situ reduction; lithium-ion battery; silicon anode; silicon nanorods; Introduction As one of the most popular secondary power sources, lithium-ion batteries (LIBs) are widely used in portable personal electronics, electrical vehicles and grid energy storage because of their high energy and
  • electrodes. The theoretical capacity of commercially used graphite anodes is only 372 mAh/g, which extremely limits the energy density of LIBs [4]. Thus, much attention has been paid to the pursuit of high performance anode materials to replace graphite. Among them, silicon is considered as the most
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 82–90, doi:10.3762/bjnano.8.9

Graphical Abstract
  • clustering with the subsequent worsening of their catalytic activity [10]. Therefore, various new synthetic procedures have been proposed to overcome these limits [42][43]. In this study, we propose a one-step strategy based on sacrificial anode electrolysis (SAE) to synthesize stabilized Pd NPs [44
  • nanostructures were prepared by SAE as reported in [44], but in this case Pd foils were used as anode (working electrode) to obtain colloidal Pd NPs. Tetraoctylammonium bromide (TOAB) was simultaneously used as electrolyte and stabilizer for Pd NPs, at a concentration of 0.05 M in 5 mL in a solution of
PDF
Album
Full Research Paper
Published 10 Jan 2017

From iron coordination compounds to metal oxide nanoparticles

  • Mihail Iacob,
  • Carmen Racles,
  • Codrin Tugui,
  • George Stiubianu,
  • Adrian Bele,
  • Liviu Sacarescu,
  • Daniel Timpu and
  • Maria Cazacu

Beilstein J. Nanotechnol. 2016, 7, 2074–2087, doi:10.3762/bjnano.7.198

Graphical Abstract
  • to changes in pH. Here, in addition to the irregularly shaped particles with a diameter of about 10 nm, agglomerates of 80–100 nm in width were observed, which in turn consist of rods approximately of 15 nm in width. From the WAXD diffractograms (Mo anode) of the NPM0–NPM2 samples (Supporting
  • seen. WAXD diffractograms (Mo anode) for samples NPU1, NPU2 and NPU2T are shown in Supporting Information File 1, Figure S26. Diffractograms for samples NPU1 and NPU2 contain no diffraction peak, which indicates the amorphous nature of the samples, while the diffractogram of sample NPU2T contains
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2016

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • substances to be detected. To get a full picture of the state of the art describing all meaningful existing approaches to detect heavy metals, we also need to mention anode stripping voltammetry (ASV). ASV uses carbon, mercury and bismuth electrodes (and others) and is a well-known method for the
PDF
Album
Full Research Paper
Published 22 Nov 2016

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

  • Sylwia Kuśnieruk,
  • Jacek Wojnarowicz,
  • Agnieszka Chodara,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 1586–1601, doi:10.3762/bjnano.7.153

Graphical Abstract
  • , Germany), attached with a vacuum pump by Leybold Trivac. The drying parameters depended on the amount and type of powder batch. Methods X-ray diffraction (XRD). XRD patterns of nano-HAp powders were collected on an X’Pert PRO, PANalytical diffractometer equipped with a copper anode (Cu Kα1) and an ultra
PDF
Album
Full Research Paper
Published 04 Nov 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the
  • /gZFO at C/10, C/5 and C/2, respectively. Regardless of C-rate, they showed some kind of activation with a minimum in specific capacity between cycle number 50 and 80. Such behavior has been observed before for ZFO and other conversion-type anode materials [53][55][58]. The capacity degradation in the
  • monodispersity of the zinc ferrite nanocrystals with low-temperature superspin glass behavior. Furthermore, we have demonstrated that they can be used as a high-capacity conversion-type anode material, showing good long-term cycling performance in Li half-cells. On the basis of the results presented herein, we
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • into the amorphous carbon matrix. When directly used as a binder-free anode for lithium-ion batteries, the network showed excellent electrochemical performance with high capacity, good rate capacity and reliable cycling stability. Under a current density of 0.2 A g−1, it delivered a high reversible
  • materials. Commercial graphite, with low specific capacity and poor rate capability, no longer meets the urgent requirements of modern technologies as an anode material for LIBs [4][5]. Hence, exploring new candidates with higher energy density and better cycling endurance becomes imperative. Presently
  • , transition metal oxides are the focus of intensive efforts for LIB anode materials due to their remarkable specific capacity, low cost and environmental compatibility [6][7][8][9][10][11]. Manganese oxide (MnO) is a particularly good choice owing to its high theoretical specific capacity of 755 mAh g−1, low
PDF
Album
Full Research Paper
Published 14 Sep 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • solubility of the lithium polysulfides (Li2Sx, 3 ≤ x ≤ 8) formed as intermediate products during charge and discharge in the commonly used organic electrolytes. The dissolved polysulfides shuttle between the cathode and anode and cause the deposition of insoluble Li2S2 and Li2S on both upon further reduction
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • . The electrodes are graphite rods (99.99% pure) to produce MWNTs, while a carbon anode containing metal particles is used to produce SWNTs. The anode and cathode are 50 mm long each with diameters of 6 mm and 10–13 mm, respectively. The discharge current and voltage were fixed, respectively, at 70 A
  • and 20 V. The surface temperatures of anode and cathode were ca. 4000 K and ca. 3500 K, respectively. Because of this temperature difference, the anode gets corroded while the cathode remains intact. A translation feedthrough was used to position the anode tip to maintain the optimum electrode spacing
PDF
Album
Full Research Paper
Published 12 Aug 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • –acceptor solar cells, the SPV measures the splitting of the quasi-Fermi levels of the holes and electrons under illumination across the donor–acceptor interface [8]. In operating devices, the quasi-Fermi levels of the holes and electrons are nearly aligned with the Fermi levels of the anode and cathode
  • , respectively. The SPV matches the open circuit voltage and is negative when the anode is grounded. Here, the situation is more complicated. The ITO substrate is also grounded, but in the absence of a top metallic cathode, both donor and acceptor units can contribute to the local SPV measured at the surface of
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016
Other Beilstein-Institut Open Science Activities