Search results

Search for "fluorescence microscopy" in Full Text gives 107 result(s) in Beilstein Journal of Nanotechnology.

Near-field effects and energy transfer in hybrid metal-oxide nanostructures

  • Ulrich Herr,
  • Barat Achinuq,
  • Cahit Benel,
  • Giorgos Papageorgiou,
  • Manuel Goncalves,
  • Johannes Boneberg,
  • Paul Leiderer,
  • Paul Ziemann,
  • Peter Marek and
  • Horst Hahn

Beilstein J. Nanotechnol. 2013, 4, 306–317, doi:10.3762/bjnano.4.34

Graphical Abstract
  • applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are supported by simulations of the electromagnetic field enhancement in
PDF
Album
Full Research Paper
Published 14 May 2013

Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes

  • Thomas Baumgärtel,
  • Christian von Borczyskowski and
  • Harald Graaf

Beilstein J. Nanotechnol. 2013, 4, 218–226, doi:10.3762/bjnano.4.22

Graphical Abstract
  • successful binding is confirmed by AFM topography measurements and spectrally resolved fluorescence microscopy. Prior to the two-step functionalization with APTES and FITC, the quality of the silane layer formation is tested and proven by the binding of long-chained silanes, which are known to form densely
  • of such systems may also be influenced by many other factors, such as tip–sample interactions and the formation of water layers, that strongly depend on the chemical nature of the surface. FITC functionalized nanostructures have been investigated using fluorescence microscopy, which further confirms
PDF
Album
Full Research Paper
Published 25 Mar 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • . Subsequently, diamond nanocrystals are spin coated onto the substrate. By using a dual atomic force microscope (AFM) and confocal microscopy setup, diamond nanocrystals that contain single color centers are then identified by fluorescence microscopy and second-order photon autocorrelation, and their position
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

  • Jinliang Zhuang,
  • Jasmin Friedel and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2012, 3, 570–578, doi:10.3762/bjnano.3.66

Graphical Abstract
  • ethanolic solution. Due to the chemical properties of –COOH and –CH3, we could expect that the growth of [Zn2(adc)2(dabco)] would be restricted to the –COOH functionalized areas. As the fluorescence-microscopy image given in Figure 7a demonstrates, the growth of [Zn2(adc)2(dabco)] on such a patterned
  • (adc)2(dabco)] nucleation. The close-up image shows the well-defined rectangles (1 × 0.3 µm2) where EB irradiation was performed. Again, the fluorescence microscopy image (Figure 8c) supports the notion that the darker areas in Figure 8a are in fact arrays of rectangles formed by the [Zn2(adc)2(dabco
PDF
Album
Full Research Paper
Published 02 Aug 2012

Distance dependence of near-field fluorescence enhancement and quenching of single quantum dots

  • Volker Walhorn,
  • Jan Paskarbeit,
  • Heinrich Gotthard Frey,
  • Alexander Harder and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2011, 2, 645–652, doi:10.3762/bjnano.2.68

Graphical Abstract
  • Volker Walhorn Jan Paskarbeit Heinrich Gotthard Frey Alexander Harder Dario Anselmetti Experimental Biophysics and Applied Nanosciences, Bielefeld University, Department of Physics, Universitätsstr. 25, 33615 Bielefeld, Germany 10.3762/bjnano.2.68 Abstract In fluorescence microscopy and
  • effects. In the presented work we used a combined total internal reflection fluorescence microscopy (TIRFM)–AFM setup to elucidate this issue. We measured the fluorescence emission emanating from single quantum dots as a function of distance from the apex of a gold-coated cantilever tip. As well as
  • Fluorescence microscopy and spectroscopy are important and versatile tools in life sciences. Fluorophores are not merely position markers, but can be regarded as active transducers that interact with species in their local vicinity and provide information about their micro-environment. The spectroscopic
PDF
Album
Full Research Paper
Published 29 Sep 2011

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • spectrum of the fluorescence reporter molecules prevents the parallel detection of several fluorescent dye labels by fluorescence microscopy. Raman spectroscopy, i.e., the excitation of vibrational modes through inelastic light scattering, allows one to obtain highly specific molecular fingerprint
  • on a quartz wafer biochip platform for DNA detection by fluorescence and SERS readout. By doing so, fluorescence microscopy allows for a fast detection of any positive or negative binding event within several seconds. Moreover SERS provides detailed molecular fingerprint information of fluorescence
PDF
Album
Letter
Published 30 Aug 2011

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • understand the structural and dynamic properties of the protein corona at the molecular level. Recently, we have used quantitative fluorescence microscopy, especially fluorescence correlation spectroscopy (FCS), to study protein adsorption of human serum albumin (HSA) on polymer-coated FePt NPs with an
PDF
Album
Full Research Paper
Published 12 Jul 2011
Other Beilstein-Institut Open Science Activities