Search results

Search for "indentation" in Full Text gives 104 result(s) in Beilstein Journal of Nanotechnology.

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • resolution in the range of hundreds of nanometers. Atomic force microscopy (AFM) has also been used for indentation studies on soft [14] as well as stiff [15] membranes. In addition, it was recently reported that the curvature of a bulged membrane was determined by AFM, while its deflection was measured with
  • a pressure–deflection curve. This force corresponds to an indentation depth δ0, which appears as a step height in topographic AFM images of nonpressurized membranes. The indentation depth δ of pressurized membranes was evaluated in order to correct the measured deflection, as described previously
  • [10]. In this system, the tension of the CNM is assumed to be the main contribution balancing the AFM tip force. The force contributed by the bending stiffness and the adhesion between the tip and the membrane was neglected. For a pressurized membrane, the indentation depth δ decreases with increasing
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 302–310, doi:10.3762/bjnano.2.35

Graphical Abstract
  • surfaces than on their replicas may be explained by the different mechanical and physicochemical properties of both substrates. We surmise that the softer and more compliant material of the plant tissue promotes insect interlocking due to easier indentation of claw tips into a softer substrate. This effect
PDF
Album
Full Research Paper
Published 16 Jun 2011

Infrared receptors in pyrophilous (“fire loving”) insects as model for new un-cooled infrared sensors

  • David Klocke,
  • Anke Schmitz,
  • Helmut Soltner,
  • Herbert Bousack and
  • Helmut Schmitz

Beilstein J. Nanotechnol. 2011, 2, 186–197, doi:10.3762/bjnano.2.22

Graphical Abstract
  • ). Indentation tests were performed by using a three-sided Berkovich diamond tip with a total included angle of 142.3°. A proper area function was established by indenting in a poly(methyl methacrylate) (PMMA) test specimen with known hardness and modulus. Contact depths range from 250 to 1100 nm. The maximum
  • load during indentation was 1,000 µN with loading and unloading rates of 100 µN/s, and a 10 s hold time at peak load to compensate for material creeping and to make sure that most of the plastic deformation was completed. It was repeatedly checked to ensure that longer holding times did not result in
PDF
Album
Full Research Paper
Published 30 Mar 2011

Tip-sample interactions on graphite studied using the wavelet transform

  • Giovanna Malegori and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2010, 1, 172–181, doi:10.3762/bjnano.1.21

Graphical Abstract
  • spectroscopy curves on the hard HOPG surface, assuming a negligible indentation and thus equal distances spanned by the cantilever tip and the piezotube. The obtained sensitivity is in the range of 50–200 nm/V, depending on the cantilever type, beam position, and laser light power level. The cantilever has a
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities