Search results

Search for "micelles" in Full Text gives 103 result(s) in Beilstein Journal of Nanotechnology.

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • technique which is based on a thermally stabile, isotropic dispersion of two immiscible solvents, in which the micro domains of one or both solvents are stabilized by tensides on the boundary layer. Such behavior is well known from tensides in water which form micelles due to hydrophilic head groups and
  • hydrophobic tails. Such micelles have a size of 1 to 50 nm depending on the tenside concentration [18]. The precursor is confined within these defined droplets which may, thus, act as nanoreactors in which particle growth is initiated. A typical result obtained by the use of an isopropanol/water emulsion and
PDF
Album
Review
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • ) nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D
  • conservation of nanoparticles by Au photoseeding is presented. Keywords: Co; CoPt; core–shell particles; FePt; magnetic anisotropy; magnetic particles; plasma etching; reverse micelles; self-assembly; Introduction Magnetic nanoparticles have been the focus of research for over 60 years [1][2]. These
  • colloidal approach where NPs are formed within a liquid, the preparation of precursor loaded reverse micelles has been developed [36][37]. Here, precursor filled diblock-co-polymers are used to form hexagonally ordered arrays on different substrates by dip-coating [38]. In a second step, NPs are formed on
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • transition in the layer (see Discussion). To further characterize the conformation of the PEG layer, we repeated our AFM measurements in 20% 2-propanol which is a poor solvent for PEG. This is because polymer brushes are known to form more compact “collapsed” clusters, known as pinned micelles, in poor
  • dependent on the applied imaging force. In this case, the AFM image resolution does not change when the imaging force is varied between 30 pN and 120 pN. Here, it is noteworthy that only the underlying Au surface and aggregates of collapsed PEG chains (pinned micelles) are resolved. Sensing the reversible
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities