Search results

Search for "nanomaterials" in Full Text gives 555 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • cancerous cells [32]. The discussed results may be useful for the selection of nanoparticle concentrations as well as irradiation sources and irradiation power for a variety of applications involving the plasmonic photothermal phenomenon. Further, the variation in plasmonic wavelengths of gold nanomaterials
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • , 11000 Belgrade, Serbia 10.3762/bjnano.14.17 Abstract Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first
  • ; Introduction Carbon quantum dots (CQDs) as a novel class of carbon nanomaterials can be prepared by using different methods and precursors [1][2]. Most of the common preparation procedures are bottom-up methods [3][4]. Depending on the used precursors and solvents, the structure of the CQDs can be modified
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • nanocomposites exhibited remarkable microbial growth inhibitory effects. Keywords: antimicrobial properties; C. albicans fungus; E. coli bacteria; photoinduced functionalized textile; silver/polymer nanomaterials; Introduction The proliferation of microorganisms is a major concern for health organizations
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Adrien Chauvin Walter Puglisi Damien Thiry Cristina Satriano Rony Snyders Carla Bittencourt Plasma-Surface Interaction Chemistry, University of Mons, 23 Place du Parc, 7000 Mons, Belgium Chemistry of Surfaces, Interfaces and Nanomaterials, Faculty of Sciences, Université libre de Bruxelles, 50
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • Horizonte – MG, 31270-901, Brazil Campus Ouro Preto, Instituto Federal de Minas Gerais, R. Pandiá Calógeras, 898, Ouro Preto – MG, 35400-000, Brazil 10.3762/bjnano.14.8 Abstract Industrial applications of nanomaterials require large-scale production methods, such as liquid phase exfoliation (LPE
  • applications that have specific requirements. Keywords: 2D materials; atomic force microscopy; liquid phase exfoliation; nanomaterials; talc; Introduction Two-dimensional (2D) materials have attracted a lot of interest due to their outstanding properties [1]. However, large-scale production is still a
  • robust, scalable production route to obtain 2D nanomaterials from minerals. However, many parameters need to be adjusted to obtain a product suitable for a given application. Here, the choice of the medium was addressed while other parameters (mechanical energy source, exfoliation time, centrifugation
PDF
Album
Full Research Paper
Published 09 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • combine with various potential applications, addressing some of the problems of this technology, including those related to cell design, negative structural features, and changes in nanomaterials that can occur during fabrication. Thus, the evaluation and elaboration of structural changes in a
  • magnetic properties, are the subject of future research and are cited in this work for a complete understanding of the complex task of developing new promising nanomaterials. A Mathematical Model for Studying the Magnetic Properties of Nanomaterials When describing the magnetic properties of a nanosystem
  • and promising magnetic nanomaterials. Magnetic crystallographic anisotropy arises on spin–orbit interaction of atoms. As a consequence, this type of interaction should be separately taken into account when constructing theoretical models and conducting numerical experiments. The type and parameters of
PDF
Album
Full Research Paper
Published 04 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • . Application trends of riboflavin-stabilized SWCNTs Small-diameter SWCNT–riboflavin conjugates represent a promising class of nanomaterials for cancer treatment and targeted riboflavin delivery [26][27][28]. It has been shown that riboflavin carrier protein is highly overexpressed in several cancer tissues
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
PDF
Album
Full Research Paper
Published 14 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • discussion below), (ii) the substitution of Co ions with other metal ions, such as Mg, Al, Fe, Ni, Mn, V [10][11][12][13][14][15][16][17][18][19][20][21][22], or (iii) the surface modification by carbon, metal, or oxide coatings [15][16]. Nanomaterials are preferred for the use in energy storage and
  • is a widely used method for the creation of nanomaterials [48][49][50][51][52][53][54][55][56][57]. Acetates, carbonates, and nitrate salts of lithium and cobalt are often utilized as starting materials and oxidizers in the combustion synthesis of lithium cobalt oxide [50][58][59]. Different ammonium
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • the applications of impedance DNA hybridisation biosensors for the detection of a number of analytes [31][32][33][34]. Nanomaterials may significantly enhance biosensor performance, stability, repeatability, and sensitivity [35][36][37][38][39]. Among various nanomaterials, graphene (Gr) [40] and gold
  • Gr/SPCE surface, which was then labelled as AuNPs/Gr/SPCE. Morphological and structural studies of nanomaterials The surface morphology of the nanoparticles and their nanocomposites were analysed using a field-emission scanning electron microscope (model SU8030 Hitachi, Japan), equipped with an
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • modification is crucial in photocatalysis. Bi-based photocatalytic nanomaterials have gotten much interest as they exhibit distinctive geometric shapes, flexible electronic structures, and good photocatalytic performance under visible light. They can be employed as stand-alone photocatalysts for pollution
  • of Bi-based photocatalysts. Keywords: bismuth-based nanomaterials; environmental remediation; heterojunction formation; photocatalysis; Introduction Nanomaterials photocatalysis is a “green” integrative technique that combines physics, chemistry, and materials science with chemical engineering to
  • makes up less than 5% of the absorbed solar radiation. Hence, developing photocatalysts that react to visible light is essential for photocatalysis since 43% of the total energy from the sun belongs to the visible spectrum [1][16]. Bi-based nanomaterials are photocatalysts that respond to visible light
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • highly fluorescent gold-silver bimetallic nanomaterials with stable fluorescence properties by a simple one-pot method using thiol salts as ligands. TPN-AuAgNCs were synthesised using tiopronin (TPN) as ligand, and the clusters emitted strong red fluorescence with good burst selectivity for Fe3+ after Ag
  • stabilize carbon nanotube fibers. Slattery et al. [41] prepared carbon nanotube probes by solvent evaporation or dielectrophoresis, the first time a solvent evaporation method was used. From the 13 probes produced using these methods, the CNT-modified nanomaterials showed very high aspect ratios and good
  • . This direction has also developed concerning nanomaterials. Carbon nanotubes are compounded with related materials to produce probes, and the analytical performance of this type of probe is better than that of carbon nanotube probes alone. Nakabayashi et al. [44] proposed using amorphous carbon matrix
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • molecular handedness. Chiral modified carbons Carbon nanomaterials possess attractive features since they are low cost, capable to be produced in large-scale, and have good stability and bio-compatibility, which makes them an excellent candidate for sensing applications [147][148][149]. Some carbon
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • improve the efficiency of energy harvesting in MEGs, and a considerable number of studies have focused on nanomaterials [9][21]. The generation of a flowing current through the injection of water flow into carbon nanotubes was one of the initial studies of MEGs [4][5][10][22][23]. Since then, more works
  • have demonstrated the application of different materials and nanoarchitectonics in MEGs and further improved the performance of the MEGs. The importance and role of nanoarchitectonics have also been gradually verified in these studies. Nanomaterials can be divided into structural units, such as
  • , photolithography, embossing, deposition, and sol–gel nanofabrication, all of which can provide high specific surface areas [19][24][25][26][27][28]. Nanomaterials can also be divided into inorganic nanomaterials and organic nanomaterials. In inorganic nanomaterials, metal nanomaterials and carbon nanomaterials
PDF
Album
Review
Published 25 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • alternative route is a promising method for synthesizing nanomaterials due to its rapid, low-cost protocol, and safety to the environment [18]. Numerous studies applied green methods for the synthesis of ZnO nanoparticles from plants, fruits, plant extracts, and seaweeds [19][20][21][22]. Rafaie et al. [23
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • nanomaterials has proved to be useful for applications in a variety of disciplines, including chemical or biological sensing, bioimaging, drug delivery, photodynamic therapy, electrocatalysis, and photocatalysis, with advantages over commonly used semiconductor dots or conventional fluorescent probes such as
  • environmentally friendly synthetic route for CDs from corn stalk shell [78]. This process transformed biomass, which was previously thought to be waste material, into carbon nanomaterials with tremendous potential. Another method for the synthesis of biocompatible fluorescent CDs from the extract of leaves of the
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • . The rough surface of the materials at the nanoscale helps cellular peptide adhesion for better stem cell growth and differentiation [12][13]. Nanomaterials have several advantages such as high surface area, increased mechanical strength, and induction of several important genes for bone tissue repair
  • and regeneration [14]. Nanomaterials such as silver [15], gold [16][17], titanium oxide [18], zinc oxide [19][20], carbon nanotubes [21][22], graphene [23] and biosilica have been studied in terms of their osteogenic potential in stem cell differentiation. Chitosan materials are often combined with
  • these nanomaterials to fabricate a scaffold that can potentially mimic the natural structure and function of the bones. The addition of nanomaterials to chitosan provides several advantages including the retaining of biological activities of nanomaterials and prevention of particle aggregation [24][25
PDF
Review
Published 29 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • Iyyappan Madakannu Indrajit Patil Bhalchandra Kakade Kasibhatta Kumara Ramanatha Datta Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India Department of Chemistry
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • , selective, sensitive, and point-of-care (POC) analytical tools for monitoring environmental pollutants [2][11]. They can also detect residual OPs based on their electrocatalytic activity and affinity toward nanomaterials, such as nanoparticles, carbon nanomaterials, and metal oxides [11]. In a few reports
  • , hybrid carbon nanomaterials such as ferrocene-thiophene modified by carbon nanotubes, zinc(II) phthalocyanine-boron dipyrromethene attached single-walled carbon nanotubes were used for the direct detection of pesticides [12][13][14][15]. So far, only limited electrochemical nanosensors modified by
  • nanomaterials have been reported to detect PT [16][17]. However, their sensitivity and detection limit for quantifying trace amounts of PT in environmental samples are improved. The inherent electrochemical behavior of nitroaromatic OPs (e.g., paraoxon, parathion, and fenitrothion) exhibit well-defined redox
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • : (1) Almost all drug-carrying nanomaterials have high cost, (2) the drug concentration of the encapsulated form is usually low, and (3) the toxicity risk of nanomaterials must be strictly controlled [32][33][34]. Most nanoformulations have relatively low drug loading (typically a few weight percent
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • may be due to the introduction of gold nanostructures. Previous studies showed that GNPs-GSH-Rh6G2 permeate well into cells [48][57][58]. Cytotoxicity studies of nanomaterials are important to determine the effects of different components of the nanostructure [59][60]. The cytotoxicity of GSH-Rh6G2
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • noble metal nanoparticles and the molecular fluorescence enhancement in the presence of ZnO alone and in combination with metal nanoparticles are also reviewed. Keywords: fluorescence; surface-enhanced Raman spectroscopy; ZnO–metal nanomaterials; ZnO nanostructures; Introduction Over the last decades
  • , ZnO-based nanomaterials have been extensively used in the industry and investigated in various application fields such as optoelectronics, biomedicine, agriculture, food, and cosmetics [1][2][3]. The wide range of applications is due to the many promising features of ZnO nanoparticles (NPs), such as
  • their wide bandgap energy (3.3–3.7 eV), strong luminescence [4][5], antibacterial properties, and UV-protection properties. Additionally, ZnO nanomaterials can be designed into various morphologies, such as nanoparticles, nanoneedles, nanorods, nanocages, nanocombs, and nanoflowers [5][6][7][8]. Hybrid
PDF
Album
Review
Published 27 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • . Nanomaterials are defined by the National Nanotechnology Initiative as manufactured or natural materials that have at least one dimension between 1 and 100 nm [33][34][35][36][37][38][39][40][41][42][43][44][45][46]. Nanomaterials are classified as metals, polymers, or ceramics according to their structure and
  • the controlled and sustained release of KGN [71]. 3.1.2.2 Nanofibers. Nanofibers are a versatile class of nanomaterials characterized by two nanoscale dimensions and a third larger dimension (below 1000 nm) [33][101]. Their biomimetic properties and simplicity of fabrication make nanofibers potential
PDF
Album
Review
Published 11 Apr 2022

Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein

  • Ismael Abu-Baker and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2022, 13, 355–362, doi:10.3762/bjnano.13.30

Graphical Abstract
  • ; Introduction Bottom-up fabrication of nanomaterials with precise control over the spatial arrangement of components is of great interest in nanotechnology [1][2]. A promising approach to this issue is the use of templates based on self-assembling biological materials, such as nucleic acids and proteins [3][4
  • particles at intermediate sizes. While TMV-cp is a promising template for nanomaterials, controlling the multiple assembly states can be challenging, especially when adding additional components with different stability requirements. Apart from adjusting pH and ionic strength, mutating the coat protein has
  • , Supporting Information File 1). Stacked disks at high isopropyl alcohol concentrations were longer than at high methanol concentrations and showed large clusters in TEM. Conclusion The use of dipolar cosolvents to perturb the assembly of TMV-cp has potential applications for nanomaterials. Low concentrations
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • used for effectively scavenging multiple ROS. Metal-based nanomaterials, such as CeO2 and Fe3O4, have been widely applied for antioxidant therapy [10]. In addition, bioactive small-molecule compounds, such as bilirubin and curcumin, and antioxidant peptides such as glutathione (GSH) and casein
  • phosphopeptides, exhibited huge therapeutic potential in antioxidant treatments [11][12][13]. Nevertheless, a plenty of disadvantages restrict biomedical applications, namely low biocompatibility of the metal-based nanomaterials, low bioavailability of hydrophobic small-molecule compounds, and easy degradation of
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022
Other Beilstein-Institut Open Science Activities