Search results

Search for "photocurrent" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

  • Debashis De,
  • Sitangshu Bhattacharya,
  • S. M. Adhikari,
  • A. Kumar,
  • P. K. Bose and
  • K. P. Ghatak

Beilstein J. Nanotechnol. 2011, 2, 339–362, doi:10.3762/bjnano.2.40

Graphical Abstract
  • photo-emitted current density from the said SLs as a function of normalized electron degeneracy, normalized intensity, wavelength and thickness, respectively, for all the cases of Figure 1. Using Equation 15 and Equation 16, the normalized photocurrent from QWW effective mass HgTe/Hg1−xCdxTe SL, whose
  • normalized photoemission from QWW effective mass HgTe/Hg1−xCdxTe and InxGa1−xAs/InP SLs decreases with increasing thickness and exhibits large oscillations. From Figure 7, it appears that the normalized photocurrent for the said system increases with increasing carrier concentration, exhibiting a quantum
  • jump for a particular value of the said variable, for all the models of both the SLs. From Figure 8 and Figure 9, it can be inferred that the normalized photocurrent in this case increases with decreasing intensity and wavelength in different manners. From Figure 10, it has been observed that the
PDF
Album
Full Research Paper
Published 06 Jul 2011

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

  • Masao Kaneko,
  • Hirohito Ueno and
  • Junichi Nemoto

Beilstein J. Nanotechnol. 2011, 2, 127–134, doi:10.3762/bjnano.2.15

Graphical Abstract
  • redox waves in the dark due to the [Fe(CN)6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox
  • electrolyte solution containing methanol and [Fe(CN)6]4−. That is, the TiO2 nanosurface responds to [Fe(CN)6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and
  • potential; nanoporous TiO2 thin film; photocurrent; Schottky junction and ohmic contact; Introduction Photoelectrocatalytic reactions at semiconductor electrodes were investigated before the 1960s [1][2]. A semiconductor electrode forms a type of Schottky junction with liquid electrolytes called a liquid
PDF
Album
Full Research Paper
Published 28 Feb 2011
Other Beilstein-Institut Open Science Activities