Search results

Search for "photovoltaic" in Full Text gives 157 result(s) in Beilstein Journal of Nanotechnology.

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
  • loading force and do useful work against it. It ceases at a critical stalling force. This has important implications. For example, in application to the photovoltaic effect in crystals with broken space-inversion symmetry [36] this means that two opposite surfaces of crystal (orthogonal to current flow
PDF
Album
Review
Published 03 Mar 2016

Determination of Young’s modulus of Sb2S3 nanowires by in situ resonance and bending methods

  • Liga Jasulaneca,
  • Raimonds Meija,
  • Alexander I. Livshits,
  • Juris Prikulis,
  • Subhajit Biswas,
  • Justin D. Holmes and
  • Donats Erts

Beilstein J. Nanotechnol. 2016, 7, 278–283, doi:10.3762/bjnano.7.25

Graphical Abstract
  • photosensitivity [3], its large absorption coefficient [4][5] and direct band gap in the visible and near infrared range (1.78–2.5 eV) [6][7][8]. Owing to these properties, Sb2S3 has also been considered as an attractive material for microwave frequency [9], optical recording [10] and photovoltaic [2][11
PDF
Album
Full Research Paper
Published 19 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • government to install photovoltaic systems on private property could be a viable solution to immediately benefit from the energy produced without the construction of additional infrastructure and without transportation losses. However, this could definitely create a sort of energy independence that is not
PDF
Album
Review
Published 01 Feb 2016

Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

  • Kuang-Yang Kou,
  • Yu-En Huang,
  • Chien-Hsun Chen and
  • Shih-Wei Feng

Beilstein J. Nanotechnol. 2016, 7, 75–80, doi:10.3762/bjnano.7.9

Graphical Abstract
  • microcrystallites has a strong green emission due to defect states in the core [11]. A blue-shifted absorption edge and photoluminescence caused by quantum confinement as well as a higher photovoltaic and sensor performance due to a larger surface area have been demonstrated in ZnO nanocrystals [14][15][16]. In
PDF
Album
Full Research Paper
Published 20 Jan 2016

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • structures [8]. AuNPs have been studied intensively for a wide range of applications such as catalysis [9], biosensing [10], colorimetric sensing [11], optical sensing (surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS)) [12][13], photonics [13][14], photovoltaic devices [15] and
PDF
Album
Full Research Paper
Published 10 Dec 2015

Nanostructures for sensors, electronics, energy and environment II

  • Nunzio Motta

Beilstein J. Nanotechnol. 2015, 6, 1937–1938, doi:10.3762/bjnano.6.197

Graphical Abstract
  • greenhouse gases that pollute the environment. Photovoltaic technology is a potentially viable solution to produce clean energy; however, its production costs are still too high due to the materials and process techniques involved. Moreover, because the sun is an intermittent energy source, the further
  • development of energy storage systems is necessary in order to allow photovoltaic-based power generation to be independent from the grid. Carbon, one of the most abundant materials found on earth, is the key atomic species in the compounds responsible for greenhouse gas emission and pollution. However, it can
PDF
Editorial
Published 23 Sep 2015

Electrospray deposition of organic molecules on bulk insulator surfaces

  • Antoine Hinaut,
  • Rémy Pawlak,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2015, 6, 1927–1934, doi:10.3762/bjnano.6.195

Graphical Abstract
  • hybrid-photovoltaic [1] or molecular electronics [2]. Information at the single molecular level, even if challenging, is required to foresee the interplay between nanoscale structures and geometries and the device properties. For reliable investigations of such systems, a well defined environment is
PDF
Album
Full Research Paper
Published 18 Sep 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • electron–polaron hole–polaron pair generation and separation at the interface. Keywords: current–voltage characteristics; perovskites; photovoltaics; polarons; Introduction At present, photovoltaic devices are mainly based on high purity elemental or compound inorganic semiconducting materials with large
  • is relatively small, the mobility is large and the diffusion length of excited electron–hole pairs can be in the 100 µm range for indirect semiconductors [1]. The examination of photovoltaic materials with properties deviating from conventional solar cells can lead to new strategies for a wide
  • evaluation for photovoltaic systems reveal vastly different properties ranging from narrow band gap manganite oxides perovskites with hopping transport to broad band gap lead halide perovskites [9][12][13][14]. For the lead halide perovskites the constituents are: A = CH3NH3+, B = Pb, and X = I, Br, Cl
PDF
Album
Full Research Paper
Published 07 Jul 2015

Using natural language processing techniques to inform research on nanotechnology

  • Nastassja A. Lewinski and
  • Bridget T. McInnes

Beilstein J. Nanotechnol. 2015, 6, 1439–1449, doi:10.3762/bjnano.6.149

Graphical Abstract
  • ][27]. More recently, the research group expanded the scope to include applications of carbon nanotubes such as incorporation in photovoltaic cells and prostate cancer therapeutics [28]. The patents, which spanned the years 1992 to 2009, were collected from E.U., Japan, Korea and U.S. patent databases
PDF
Review
Published 01 Jul 2015

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • extensively studied self-assembled systems due to their rich structural and electronic properties [1]. A considerable interest in C60 films arises from their use in photovoltaic cells [2][3] and potential applications in molecular electronics [4]. Likewise, C60 molecules can be used as chemical anchoring
PDF
Album
Full Research Paper
Published 29 Jun 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • emitting diodes and photovoltaic cells [1][2]. Tuning the optical and conductive properties of ECPs is possible either by tailoring the polymer backbone with chemical side groups [3] or by preparing composites with nanoparticles [4][5][6][7]. ECP hybrids containing carbon nanotubes, fullerene-based
PDF
Album
Full Research Paper
Published 08 May 2015

Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

  • Serena Gagliardi and
  • Mauro Falconieri

Beilstein J. Nanotechnol. 2015, 6, 886–892, doi:10.3762/bjnano.6.91

Graphical Abstract
  • optical functionality of novel photoanode structures. Keywords: dye-sensitized solar cells; light trapping; optical characterization; photoanode modeling; titania nanostructures; Introduction The exploitation of solar irradiation, in particular by the use of photovoltaic (PV) technologies, is a widely
  • and simple manufacturing techniques ensures low-cost production and makes DSSCs a promising class of photovoltaic cells, even though the demonstrated efficiency on the laboratory scale is still well below the performance of more mature photovoltaic technologies. Much effort is devoted to the
  • improvement of the conversion efficiency while maintaining low cost and extending the device lifetime. One of the key factors for efficient photovoltaic conversion is related to the optical properties of the photoactive material. The knowledge of the optical functionality can therefore aid in the optimization
PDF
Album
Full Research Paper
Published 02 Apr 2015

Graphene quantum interference photodetector

  • Mahbub Alam and
  • Paul L. Voss

Beilstein J. Nanotechnol. 2015, 6, 726–735, doi:10.3762/bjnano.6.74

Graphical Abstract
  • generation mechanisms in graphene photodetectors include the photovoltaic effect, photothermoelectric effect, bolometric effect and phonon drag effect [3]. In the photovoltaic effect, the built-in electric field generated in the junction of p- and n-type graphene is utilized for separation of photogenerated
PDF
Album
Full Research Paper
Published 12 Mar 2015

Simple approach for the fabrication of PEDOT-coated Si nanowires

  • Mingxuan Zhu,
  • Marielle Eyraud,
  • Judikael Le Rouzo,
  • Nadia Ait Ahmed,
  • Florence Boulc’h,
  • Claude Alfonso,
  • Philippe Knauth and
  • François Flory

Beilstein J. Nanotechnol. 2015, 6, 640–650, doi:10.3762/bjnano.6.65

Graphical Abstract
  • poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) (a successful, commercial, conducting polymer) onto a SiNW array. This gave very promising results for photovoltaic cells based on this heterojunction, with a photon capture efficiency (PCE) of 6.72% [15]. The resulting SiNW/PEDOT/PSS
PDF
Album
Full Research Paper
Published 04 Mar 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • and photovoltaic applications as they can improve the photon absorption efficiency of semiconductors. Moreover, the luminescence phenomena are typically related to recombination processes, so the higher luminescence signal, the higher the recombination process. Thus, as the samples comprised of a
PDF
Album
Full Research Paper
Published 02 Mar 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • important breakthrough, since it enables the combination of plasmonic with electrical functionalities: the antennas can be used also as nanoelectrodes for photovoltaic, electro-photochemical catalysis, optoelectronic and bio-electrochemical devices. As a final remark, it should also be considered that the
PDF
Album
Full Research Paper
Published 18 Feb 2015

Carrier multiplication in silicon nanocrystals: ab initio results

  • Ivan Marri,
  • Marco Govoni and
  • Stefano Ossicini

Beilstein J. Nanotechnol. 2015, 6, 343–352, doi:10.3762/bjnano.6.33

Graphical Abstract
  • limitations of traditional solar cell devices. Among such innovative materials, nanostructures have emerged as an important class of materials that can be used to realize efficient photovoltaic devices. When these systems are implemented into solar cells, new effects can be exploited to maximize the harvest
PDF
Album
Full Research Paper
Published 02 Feb 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • making the material quasi-direct through the process of Brillouin zone folding [3]. For example, non-phonon processes were shown to dominate in the case of porous Si under strong confinement potential [4][5][6]. In addition, Q-effects in porous semiconductors can be interesting for photovoltaic
PDF
Album
Full Research Paper
Published 30 Jan 2015

Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111)

  • D. J. Lockwood,
  • N. L. Rowell,
  • A. Benkouider,
  • A. Ronda,
  • L. Favre and
  • I. Berbezier

Beilstein J. Nanotechnol. 2014, 5, 2498–2504, doi:10.3762/bjnano.5.259

Graphical Abstract
  • fabrication of various NWs for applications such as photovoltaic tandem solar cells has been enabled [10][11][12]. Most of the device specifications require a low cost fabrication process with good control over the NW reproducibility and uniformity [13]. A variety of different NW growth methods have been
PDF
Album
Full Research Paper
Published 30 Dec 2014

Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Valdek Mikli,
  • Arvo Mere,
  • Ilmo Sildos and
  • Malle Krunks

Beilstein J. Nanotechnol. 2014, 5, 2398–2402, doi:10.3762/bjnano.5.249

Graphical Abstract
  • with a band gap of 1.5 eV that is often used as a photovoltaic absorber. Previously published, related work by our research group regarding CIS-based solar cells includes: the synthesis and properties of CIS [5][6], application of CIS in extremely thin absorber solar cells based on ZnO nanorods [7
PDF
Album
Letter
Published 12 Dec 2014

In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

  • Fabio Lupo,
  • Cristina Tudisco,
  • Federico Bertani,
  • Enrico Dalcanale and
  • Guglielmo G. Condorelli

Beilstein J. Nanotechnol. 2014, 5, 2222–2229, doi:10.3762/bjnano.5.231

Graphical Abstract
  • Free (Pc) and metallophthalocyanines (M–Pc) are molecules of great interest because of their versatile optical and electronic properties as well as their thermal stability [1]. These properties make them attractive molecular materials for applications in photovoltaic cells [2], sensing devices [3][4
PDF
Album
Full Research Paper
Published 25 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • is widely used and investigated because of its stable physical and electrochemical properties and finds application in optoelectronic and photovoltaic devices, as well as in the sensitive detection of species such as glucose, hydrogen peroxide and DNA fragments [56][57]. Samples of the Au–ITO
PDF
Album
Review
Published 13 Nov 2014

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • comparable to traditional photovoltaic semiconductors, has been demonstrated [3]. Different approaches have been made to achieve light emission from group-IV semiconductor nanostructures despite the indirect nature of the energy gaps. The quantum confinement of carriers has led to efficient luminescence and
PDF
Album
Review
Published 16 Oct 2014

Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

  • Priscilla Vasthi Quintana-Ramirez,
  • Ma. Concepción Arenas-Arrocena,
  • José Santos-Cruz,
  • Marina Vega-González,
  • Omar Martínez-Alvarez,
  • Víctor Manuel Castaño-Meneses,
  • Laura Susana Acosta-Torres and
  • Javier de la Fuente-Hernández

Beilstein J. Nanotechnol. 2014, 5, 1542–1552, doi:10.3762/bjnano.5.166

Graphical Abstract
  • cadmium, such as cadmium telluride, CdTe, or cadmium sulfide, CdS, have been widely investigated regarding their application in the optoelectronic field, mainly in photovoltaic devices due to the semiconducting, electronic and optical properties [1][2][3][4][5]. Cadmium is a toxic heavy metal, which
  • bulk semiconductor due to the quantum effects [6]. Among the non-toxic nanomaterials with a small energy band gap that are promising for photovoltaic devices are: iron sulfide (FeS2), tungsten sulfide (WS2) and copper sulfide (Cu2S) [7]. The last is a terrestrially abundant and interesting
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2014

Review of nanostructured devices for thermoelectric applications

  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2014, 5, 1268–1284, doi:10.3762/bjnano.5.141

Graphical Abstract
  • the fields of energy recovery and green energy harvesting. For example, they can be used as alternative to photovoltaic cells [1][2], or together with advanced photovoltaic cells [3][4], for the conversion of solar energy into electrical power. Several industrial processes need a large amount of heat
  • TEGs as alternative to photovoltaic cells must aim for the maximum exploitation of solar energy, hence to the maximum conversion efficiency. A strong increase of conversion efficiency would also allow for the minimization of the heat dissipated on the cold side, so that the exchanging surface of the
PDF
Album
Review
Published 14 Aug 2014
Other Beilstein-Institut Open Science Activities