Search results

Search for "semiconductors" in Full Text gives 341 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • concentration. Due to their excellent properties and cost efficiency, gas sensors based on metal oxide semiconductors, such as ZnO [5], SnO2 [6], WO3 [7], TiO2 [8], Er-SnO2 [9], Au-In2O3 [10], GO-WO3 [11] and Ni-SnO2/G [12] have been widely studied until now. However, their sensing properties regarding low
PDF
Album
Full Research Paper
Published 16 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • the determination of mobilities in macroscopic samples. Keywords: conducting atomic force microscopy; lateral charge transport; nanografting; organic semiconductor; self-assembled monolayer; Introduction Charge transport in organic semiconductors plays a central role in the field of molecular
  • SAMs yielded a rather high charge carrier mobility of 6.7 cm2·V−1·s−1. Although these studies represent a major step forward with regard to determining intrinsic charge carrier mobilities in organic semiconductors, it has to be noted that in this previous approach the conductive islands were formed in
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • penetration depth for light of 600 nm wavelength is about 100 nm, assuming α = 1 × 105 cm−1 (Figure 3c). Electron mobility tends to be greater in semiconductors when compared to hole mobility, although the efficacy of electron transport is also subject to change when the absorber thickness is varied. In this
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • remarkable light absorption capacity [5] and the tunable band gap [6] of inorganic–organic lead halide perovskite crystals make them suitable for the production of organic semiconductors [7], photodetectors [8], and photovoltaics [5]. In 2009, Kojima et al. achieved a breakthrough in using mesoporous TiO2 as
PDF
Album
Full Research Paper
Published 05 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • . The considerable decrease in the conductivity is due to the oxidizing nature of the injected vapours. As the tested oxygen-treated and gold-decorated MWCNTs are p-type semiconductors, the adsorption of the oxidant vapour molecules leads to a transfer of the majority carriers of p-type semiconductors
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • monolayer of organic semiconductors have become clear in recent research examples. Of course, further efforts regarding nanoscale design of sensing materials for better performance and selectivity have to be made. In many cases, sensor advancements can be implemented with the nanoarchitectonics
PDF
Album
Review
Published 16 Oct 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • sputtering; magnetic anisotropy; nickel; Introduction The realization of electronics based on utilizing the electron spin degree of freedom, commonly referred to as spintronics, requires the integration of ferromagnetic films with semiconductors [1]. Nickel is a ferromagnetic heavy 3d transition metal that
PDF
Album
Full Research Paper
Published 20 Sep 2019

Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws

  • Wanli Yang,
  • Shuaiqi Fan,
  • Yuxing Liang and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2019, 10, 1833–1843, doi:10.3762/bjnano.10.178

Graphical Abstract
  • ; piezoelectric property; p–n junction; Introduction With the new area of piezotronics proposed by Wang [1][2], researches on the fundamental characteristics of piezoelectric semiconductor structures and devices have been increasing. It should be emphasized that the most commonly utilized semiconductors at
  • present are third-generation semiconductors, for instance, ZnO, GaN, CdS, and AlN, with wide bandgap, high breakdown electric field, high thermal conductivity, and even mechanical tunability [3]. They show numerous application prospects in electric devices and sensors, such as energy harvesters [4][5][6
  • ZnO nanowire based on the linear phenomenological theory of piezoelectric semiconductors. In their studies, the electric leakage of a bent ZnO nanowire is connected to the semiconductor properties and concluded that a lower doping concentration is more suitable for a bent ZnO nanowire to harvest
PDF
Album
Full Research Paper
Published 06 Sep 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • and similarities between those two structures. Based on the electronic conduction, most transition metal oxides could be classified as insulators or semiconductors. However, due to the plethora of available valence states in which a cation can be, many transition metal oxides may also exhibit metallic
PDF
Album
Full Research Paper
Published 02 Aug 2019

Graphynes: an alternative lightweight solution for shock protection

  • Kang Xia,
  • Haifei Zhan,
  • Aimin Ji,
  • Jianli Shao,
  • Yuantong Gu and
  • Zhiyong Li

Beilstein J. Nanotechnol. 2019, 10, 1588–1595, doi:10.3762/bjnano.10.154

Graphical Abstract
  • [8]. GY has a non-zero bandgap, which indicates a potential application in next-generation carbon-based semiconductors [9]. In addition, the properties of GYs are highly tunable through the modification of the topology. For instance, GYs are found to absorb light in the HOMO–LUMO band and the energy
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • nanoarchitectonics (controlled single atom/ion transfer) to regulate the number of dopant atoms in one-dimensional solid electrolyte nanodots (α-Ag2+δS) [127]. The nanoarchitectonic construction of one-dimensional nanowires from II–VI semiconductors was demonstrated for the use as wavelength division multiplexer as
PDF
Album
Review
Published 30 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • such as doping [21], sensitization [22], modification [23], coupled and supported semiconductors [24]. As an important bismuth oxyhalide semiconductor material, bismuth oxychloride (BiOCl) has gained extensive attention in photocatalysis [25][26]. BiOCl has a band gap of 3.05–3.55 eV [27], which allows
  • Figure 9. BiOCl and TiO2/diatomite are n-type semiconductors, and the flat-band potential (vs Ag/AgCl) is −0.75 V and −1.04 V, respectively. According to Equation 1, the flat-band potential relative to Ag/AgCl can be converted to the normal hydrogen electrode (NHE) potential: where E0Ag/AgCl = 0.197 V
  • [46]. Generally, for n-type semiconductors, the flat-band potential is about 0.1 V smaller than the minimum of the conduction band (CB). Therefore, the positions of the CB for BiOCl and TiO2/diatomite are about −0.45 V and −0.74 V (vs NHE), respectively. According to Equation 2 and Eg of BiOCl and
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • the carriers migrating to the surface of the semiconductor to participate in the photoreactions [15]. Decorating semiconductors with noble metals, such as Ag, Au, and Pt, is a strategy to enhance the photocatalytic performance. Certain noble metals exhibiting surface plasmon resonance (SPR) can
  • promote the absorption of visible light and produce hot charge carriers that can increase the charge density of the substrate semiconductor [16][17]. In addition, as an effective electron sink, noble metals can capture photogenerated electrons and leave holes on the surface of semiconductors, which can be
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • addition, we also observed a drop in CPD on the surface without O2 exposure, indicating that the drop in CPD is not due to O2 adsorption. Third, we analyze the influence of the local pinning of the Fermi level due to defect states [55][56]. In the case of n-type semiconductors, negatively charged defect
  • states derived from donor atoms may localize at the steps and increase the work function due to upward band bending. In contrast, for p-type semiconductors positively charged defect states from acceptor atoms may localize at the steps and decrease the work function due to downward band bending. However
  • free electrons than semiconductors. In this study there is not enough experimental evidence to conclude that the Smoluchowski effect is responsible for the observed effect; further experiments or theoretical investigations such as DFT calculations would be required. In addition to the Smoluchowski-like
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • ]. Recently, photocatalytic degradation of organic dyes using semiconductors has attracted much attention [6]. This refers to the process in which organic compounds are gradually oxidized into inorganic compounds or even H2O and CO2 under the synergistic effects of light and photocatalysis. ZnO is one of the
PDF
Album
Full Research Paper
Published 03 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • silicates showing diverse structural arrangements and morphologies (Figure 1) with topologies able to accommodate a variety of NPs of semiconductors such as TiO2 and ZnO. TiO2 and, to a minor extent, ZnO NPs in the form of anatase and wurtzite phases (Figure 1E and 1F, respectively), are semiconducting
  • semiconductors such as ZnO are increasingly investigated for processes concerning environmental remediation, antibacterial activity and chemical technologies for hydrogen production and synthesis of organic compounds [22]. Anyway, according to WoS, in the given period TiO2 NPs appear to be cited ten times more
  • transition metals or with other semiconductors. Among them, semiconductor heterojunctions have attracted great attention [139]. The doping of TiO2 and ZnO NPs with the aim to conveniently tuning the bandgap energy values can be a suitable option. In this context, it has been verified for both types of NPs, a
PDF
Album
Review
Published 31 May 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • polarization is taken into account, the bandgaps of the Si- and S-doped phosphorenes widen in the 4 × 4 × 1 and 5 × 5 × 1 supercells with concentrations of 1.56% and 1%, respectively, so that the Si- and S-doped phosphorenes become semimetals or semiconductors. This phenomenon suggests that the magnetism needs
PDF
Album
Full Research Paper
Published 02 May 2019

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • effective strategy, the combination of C-doping with nanocomposite semiconductors, is presented in this work. C-doped g-C3N4 (CCN) was prepared by supramolecular self-assembly and subsequently a number of CdIn2S4/CCN composite photocatalysts were designed and fabricated though in situ decoration of CdIn2S4
  • CIS, improving the charge transfer/separation efficiency. Upon visible-light irradiation, both CCN nanosheets and CIS can absorb photons to produce massive electron–hole pairs, then electrons in the VB of the semiconductors are able to be excited to the CB, leaving holes in the VB. Because the CB edge
PDF
Album
Full Research Paper
Published 18 Apr 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • -bandgap p-type semiconductors, such as NiO, and their functionalization with sensitizers, have been less extensively studied by using SPM [12][13][14][15]. NiO was the first reported p-type wide-bandgap semiconductor [16], and can be used for the fabrication of p-type DSSCs with photoactive cathodes, a
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • Brillouin zone. The resulting band structures using HSE are presented in the following paragraphs. In Figure 7, we present the band structures of the AcOBr, BaFBr, BiOBr, and CaFBr monolayers. We found that the AcOBr, BaFBr, and CaFBr monolayers are direct-bandgap semiconductors with the valence-band
  • earlier studies [42] that 2D materials can display a much larger sunlight absorption than commonly employed semiconductors. Also, the materials studied here can be employed in heterostructures to complement or replace other large-bandgap 2D materials, such as hexagonal boron nitride, or to dissociate
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • ; ultrasonication; Introduction Metal halide perovskite nanocrystals (PNCs) are promising candidates for application in the fields of light-emitting diodes (LEDs) [1][2], high-efficiency solar cells [3], low-threshold lasers [4], and photodetectors [5]. Compared to traditional semiconductors, colloidal PNCs
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • of the GCN-5 sample are measured by using the Mulliken electronegativity theory [32]; ECB = X − Ee − 0.5 Eg, where ECB is the CB edge potential; X is the geometric mean of the absolute electronegativity of the constituent atoms in the semiconductors, which is defined as arithmetic mean of the atomic
  • electron affinity (EEA) and first ionization (Eion) energy; Ee is the energy of free electrons on the hydrogen scale (≈4.5 eV vs NHE); Eg is the band gap of semiconductors. The conduction and valence band potential value for GCN-5 are −1.01 and 1.05 eV, respectively, and is found to be lower than any CN
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • reflected by the top surface of the nanowire, thus increasing total reflection. Anttu et al. suggest another possible explanation for the optimal cross section value [19]. In their work on III–V semiconductors nanowire arrays, they observed the presence of optimum, bandgap-dependent nanowire diameter values
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • semiconductor atoms essentially act as nanoparticles which absorb light due to localized plasmon excitation [25][26]. If that is the case, such additional bands should be observable in the permittivity of any plasmonic metal thin layer film in which a semiconductor segregates. Of the semiconductors, only Ge and
  • the surface of Au layer were detected. This indicates the occurrence of grain boundary segregation or diffusion of these semiconductors in the plasmonic thin films. The curve shape of the Te concentration in the Ag layer suggests the dominant role of segregation. The study of the electron energy loss
PDF
Album
Full Research Paper
Published 21 Jan 2019
Other Beilstein-Institut Open Science Activities