Search results

Search for "tip–sample interaction" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

Tip-sample interactions on graphite studied using the wavelet transform

  • Giovanna Malegori and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2010, 1, 172–181, doi:10.3762/bjnano.1.21

Graphical Abstract
  • , i.e., signal with a frequency spectrum changing during the data collection. This work will show that the tip-sample interaction forces can be quantitatively measured using CWT with acquisition times as short as few tens of milliseconds, as required for practical DFS imaging. Since wavelets are a
  • of the PSD as a function of z. Considering each flexural mode equivalent to a mass-spring system, the tip-sample interaction elastic constant kts = −dFts/dz is expressed as a function of the resonant frequency as , where is the resonant frequency of the free cantilever, is the resonant frequency of
  • effect of the tip-sample interaction dominates. Continuous wavelet transform and time-frequency resolution The FT analysis provides a frequency representation of a signal with perfect spectral resolution but without the possibility to correlate the frequency spectrum with the signal evolution in time
PDF
Album
Full Research Paper
Published 22 Dec 2010

Sensing surface PEGylation with microcantilevers

  • Natalija Backmann,
  • Natascha Kappeler,
  • Thomas Braun,
  • François Huber,
  • Hans-Peter Lang,
  • Christoph Gerber and
  • Roderick Y. H. Lim

Beilstein J. Nanotechnol. 2010, 1, 3–13, doi:10.3762/bjnano.1.2

Graphical Abstract
  • on the AFM images can be understood by comparing the tip-sample interaction forces obtained in PBS and 20% 2-propanol, respectively (Figure 5). Specifically, the thickness of the PEG layer (defined by the onset of repulsion) reduces from 26 nm in the brush-like state to 5 nm in the collapsed state
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities