Search results

Search for "transfer" in Full Text gives 1012 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • particle collection, the particle motion patterns, and the transfer of particles to the mouth opening. It clearly depicts that short and long setae are more effective when they work in concert and have different mechanical properties and different adhesion forces. This study is rather a protocol for
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • be taken with a grain of salt, particularly in the MD simulations. Heat flux field In systems with complex geometry, the nuances of heat transfer beyond broad thermal conductance can be understood by examining the heat flux throughout the system. By investigating the flux through kinked systems, it
  • . Classical heat transport solutions Fourier solutions were obtained through the use of Mathematica’s standard heat transfer library [55], built on a geometry matching that of the PMC, with appropriate boundary conditions to match the isothermal regions implemented in the PMC. Dimensionless units are used for
PDF
Album
Full Research Paper
Published 15 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • regarding the width of the peaks. The interaction of the liquid with the hot crucible is analogous to the interaction of the liquid with the transducer from the thermal point of view. In both cases, the contact of the liquid with the hot surface causes a temperature drop due to the heat transfer from the
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • and describe commonly used conjugated organic materials and structural designs. Keywords: absorption; conjugated molecules; energy transfer; photothermal materials; solar steam generation; Review Introduction With the rapid development of the world economy, global water shortages are occurring
  • either undergo radiative relaxation in the form of photons or nonradiative relaxation in the form of phonons (heat) to release and transfer energy to impurities/defects or dangling bonds on the material surface. When energy is released in the form of phonons, local heating of the lattice is induced
  • -withdrawing (EW) groups, such as malononitrile (DCV) and 2-(3-oxo-indan-1-ylidene)malononitrile (INCN) to the DPP core enhances the stability of DPP dyes [27]. In addition, when a thienyl spacer was introduced between the DPP and EW groups, efficient intramolecular charge transfer (ICT) interactions were
PDF
Album
Review
Published 04 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • a strong crystal field) [28][29]. The shape of the XAS spectra (Ni edge) indicates a similar type of oxides in the structure of the catalysts. The addition of GO to NiFe and CoNiFe intensified both the nickel and iron L3 edge peaks, indicating partial electron transfer from nickel and iron to the
  • indicate charge transfer from cobalt to carbon and the formation of Co–O–C bonds in the catalyst [31]. Moreover, the spectra show that the dominant cobalt species in the studied catalysts were Co3+ and Co2+ [25]. The L3 edge of carbon in NiFe-GO and CoNiFe-GO is presented in Figure 3d. In general, the
  • the improvement in the OER of NiFe-GO with the higher Qdep of NiFe and GO resulted mainly from the NiFe structure and the electroactive surface area and the porosity of GO. Electrochemical impedance spectroscopy (EIS) was performed in order to determine the charge transfer resistance (Rct) of the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • inevitable reduction in the dependency on fossil fuels, global energy demand looks to solar power to be a significant provider for its needs, with various solar power conversion technologies in place and rapidly progressing [1]. Electromagnetic radiation, when interacting with a material can transfer energy
  • are processes other than complete absorption through which photon energy can be transferred to a material. Elastic scattering is not relevant for PT applications as there is no transfer of energy into the material for heating. Absorption/inelastic scattering of electromagnetic radiation can lead to
  • distribution. The electromagnetic absorptivity of the metal conduction electrons is proportional to the rate of momentum transfer to the lattice. It can be written as [64]: m* is the effective electron mass, n is the electron density, and τeff is the conduction electron relaxation time given by τ is the
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • Izzet Baysal University, 14030 Bolu, Türkiye Department of Medical Microbiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye Technology Transfer Application and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Türkiye Department of Biostatistics and
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • static electric field, which effectively aids in the separation and transfer of photogenerated carriers. Bulk Bi and Bi-based nanostructure morphologies can also be easily altered using a variety of synthesis techniques due to their unique electrical and optical properties, which are directly tied to the
  • mechanical stability against photocorrosion; (c) high efficiency in quantum conversion; (d) fast generation and efficient transfer of photocarriers (e− and h+); and (e) slow recombination rate of photogenerated charge carriers. The nanopowder photocatalysts must also exhibit easy and rapid recovery from the
  • semiconductor and a noble metal with an appropriate work function. A unidirectional charge transfer is enabled by the Schottky potential barrier, increasing charge density and separation [72]. Shen et al. [166] created a Schottky junction by synthesising NiSe2 nanosheets on top of BiVO4 nanosheets using a
PDF
Album
Review
Published 03 Mar 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • superconductor/ferromagnetic insulator hybrid structures was applied to describe nonstationary phenomena, such as generation of spin transfer torques, nonuniform thermoelectric effects, and domain wall movement. The theoretical description of the dynamic proximity effect is the more complex task because of the
PDF
Album
Full Research Paper
Published 21 Feb 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • dissipated to the surrounding medium is defined as: where S is the surface area of the cuvette exposed to the surrounding environment, h is the heat transfer coefficient, Tmax is the maximum temperature attained on irradiating the suspension for time t, and T0 is temperature of the surrounding environment
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • of the effects of semiconductor interface states with high spatial resolution using high and low AC bias frequencies compared with the cutoff frequency of the carrier transfer between the interface and bulk states. Information on the energy spectrum of the interface state density is important for
  • interface state density inside semiconductors. We derive an analytical expression for the electrostatic forces between a tip and a semiconductor sample in the accumulation, depletion, and inversion regions, taking into account the charge transfer between the bulk and interface states in semiconductors. We
  • -low KPFS using high- and low-frequency AC bias voltages to measure the interface state density inside semiconductors. We derive an analytical expression for the electrostatic force between the tip and the sample that takes into account the charge transfer between the bulk and interface states in the
PDF
Album
Full Research Paper
Published 31 Jan 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • significantly, especially, by the presence and distribution of various functional groups on the basal plane and edges of carbon network, affecting, in turn, the CQD properties. Doping of CQDs with nitrogen, chlorine, or fluorine heteroatoms induces larger a transport bandgap, increased charge transfer
  • resistance, and better antioxidant properties compared to pristine CQDs [5]. Functionalization of CQDs with amino groups (NH2 groups) induces a redshift of the photoluminescence because of the charge transfer from the amino groups to the carbon honeycomb core [6]. Also, grafting with NH2 groups, by means of
  • through energy transfer to molecular oxygen [21]. Chong et al. claimed that superoxide anions are involved in the generation of singlet oxygen, implying that electron transfer is an intermediate step for the generation of singlet oxygen by photoexcited graphene quantum dots [20]. In nitrogen-doped
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • asymmetrical coupling. This refers to an energy transfer either easier or harder from the first mode to the second compared to a transfer from second to first. Two directional coupling terms were introduced to account for this possibility, later to be investigated in detail. Equation 1 only shows the energy of
PDF
Album
Full Research Paper
Published 19 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • projection α at a point x, m is the electron mass, and μ is the chemical potential, is the Hamiltonian of a superconducting electrode with the order parameter Δ and the terms account for electron transfer through the junctions between the superconductor and the normal leads. In Equation 4, the surface
PDF
Album
Full Research Paper
Published 09 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • lithography operations and could severely limit the obtainable feature resolution if neglected. Chemical lift-off lithography (CLL) is a rapidly emerging subtractive lithographic technique that aims to overcome the lateral diffusion and gas phase transfer obstacles present in conventional soft lithography [17
  • modulating stamp properties for micrometer-scale features [27]. utilizing different assembled and backfilled species [28][29]. and further substrate processing, e.g., pattern transfer to the underlying material layer [30][31][32][33][34][35][36]. In practice, CLL allows simple and facile fabrication of
  • structure characterization To transfer chemical patterns created by CLL to the underneath metal layer, a wet chemical etching process was adopted. After lifting the PDMS stamp from a SAM-modified Au substrate, the Au surface was immersed in an aqueous mixture containing 40 mM iron nitrate and 60 mM thiourea
PDF
Album
Full Research Paper
Published 04 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • − ionization of the corresponding atoms, which enables effective charge transfer along the polymer chain [2]. (a) Schematics of a Pb (grey)–PDP (blue)–Pb (grey) three layer heterostructure on insulating substrate (not indicated for simplicity). The layout enables electron transport measurements of each lead
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • , which can improve the charge transfer states [33][34]. These two low-bandgap semiconductors improved considerably the PEC water splitting efficiency [35][36]. However, the fabrication of MoS2/TNAs and g-C3N4/TNAs has many disadvantages such as high synthesis temperatures, the requirement of a binder, or
  • with previous publications [50][51][52]. Figure 5 shows the results of electrochemical impedance spectroscopy (EIS), that is, Nyquist and Mott–Schottky plots of the materials, which give information about the charge transfer mechanism at the interface. In Figure 5a, the Nyquist plots of the samples all
  • exhibit only single semicircular shape, which shows the charge transfer resistance equivalent to the polarization resistance. This result also demonstrates a unique interaction of the electrode surface and the electrolyte solution. Furthermore, the g-C3N4 sample shows the semicircle with the largest
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • by Chelkowska et al. [36]. The TFG model includes the following reactions: The reaction in Equation 6 shows that the ozone decomposition process is initiated by hydroxy anions. Two-electron transfer of the oxygen atom produces the –OOH anion, which is necessary for the generation of hydroxyl radicals
  • higher than the bandgap energy generates holes and electrons, which, after moving to the catalyst surface, may participate in redox processes. In a basic medium, the photocatalytic process may proceed by oxygen reduction at the surface of the particles (electron transfer only) [37]. A similar electron
  • transfer can occur during the adsorption of organic compounds on magnetite. In the presence of adsorbed aryl halogenated compounds on the catalyst surface, the accumulated electrons are available to activate carbon–halogen bonds via dissociative electron transfer [38][39]. The electron from the catalyst
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • cyclic voltammograms show that incorporating TiO2 with the MWCNTs leads to a decrease in the electrical double layer, thereby facilitating the electron transfer rate in the TiO2@MWCNTs electrode. Moreover, the current density of the photoelectrochemical electrode formed by TiO2@MWCNTs under solar
  • thick electrical double layer (EDL) [33]. However, incorporating TiO2 onto the MWCNTs leads to a decrease of the EDL, increasing the electron transfer rate in the TiO2@MWCNTs electrode [34]. Puthirath et al. proved that the EDL has a significant influence on the hydrogen evolution reaction of the
  • electrode [35]. Based on the cyclic voltammetry results, it could be suggested that the TiO2@MWCNTs electrode is superior regarding photoelectrochemical application compared to TiO2 and MWCNTs electrodes. Electrochemical impedance spectroscopy (EIS) is applied to characterize the electron-transfer property
PDF
Album
Full Research Paper
Published 14 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • its progression. A possible path for the feasible propagation of viscoelastic AFM measurements into medical practice While the connection between nanomechanical AFM measurements and clinical applications seems intuitive, the transfer of technology into clinics is not straightforward and requires a
  • may not be something that needs to be implemented at the clinic or hospital level in all cases evaluated. First, we propose that the team be composed of at least the following members in order to have expertise in all the relevant areas of technology transfer: an AFM scientist who is committed to the
  • information can begin to be developed and where the benefits of the previous evaluation can be confirmed or disproved. Finally, if the outcome still suggests that the transfer of technology should proceed, the team could then propose a strategy for further dissemination of the technology in medical
PDF
Album
Perspective
Published 09 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • large surface area, high electrical conductivity and electron transfer rate, and it can immobilise diverse molecules, which is ideal for biosensor design [37][38][42]. On the other hand, AuNPs offer outstanding characteristics such as biocompatibility, conductivity, catalytic efficiency, density, and
  • which accelerated the electron transfer rate of [Fe(CN)6]4−/3−. The DPV of SPCE modified with the AuNPs/Gr nanocomposite exhibited the highest peak current in 2.0 mM K4[Fe(CN)6] compared to that of the bare surface of SPCE (Figure 3c). The DPV peak current values for AuNPs/Gr, AuNPs, and Gr electrode
  • surfaces were 31.55, 26.36, and 26.21 mA, respectively. This finding proves that the AuNPs/Gr nanocomposite is suitable for electrochemical analysis and enhances the electrocatalytic activity by facilitating electron transfer in the redox process [54]. Bare SPCE and modified SPCE surfaces were examined
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • , lower charge transfer resistance, and improved charge carrier density (2.97 × 1019 cm−3). This subsequently enhanced the photocurrent density (three times) and decreased the photovoltage decay time (two times) in comparison to those of HBN. The electronic band structure (obtained through Mott–Schottky
  • variation in the structural morphology results in development of multiple active sites that ensure adsorption and effective charge transfer [10]. On the other hand, HBN has been utilised as a support material in the formation of heterojunctions owing to its large surface area and separation of charge
  • . The mechanistic insights on the transfer and separation of charge carriers along with the photodegradation performance and reactive oxygen species (ROS) trapping have been enunciated in detail. The apparent quantum efficiency (AQE) further substantiated the potential of MBN to be used as a visible
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • distortionless enhancement by polarization transfer (DEPT)-edited heteronuclear single quantum correlation (HSQC) analyses. Moreover, taking advantage of the high ability of both CD cavities and silver layer to interact with small molecules to form nanoantibiotics [15], we decided to combine Au@Ag BMNPs (nanoGS
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • available. Engineers or other scientists from the applied sciences could benefit greatly from this natural resource by identifying biological “solutions to problems” and developing concepts of subsequent technical transfer. Currently, two classes of biomimetic strategies are practiced. The first one, the
  • represented by a sequence of projects in which the co-authors of this paper were involved in different combinations. The underlying biomimetic problems and physical as well as biological topics just provided the vehicle to describe the flow of concepts, inspirations and transfer problems. Perspective The
  • escape from the pockets formed by the honeycombs, is compressed but expands again as soon as the pressure is released, reestablishing the plastron [21][22]. The straight pathway does not provide a solution Transfer problems with the biological models. As fascinating as the air-holding hair cover of
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • is shown in Figure 6b. From this, the average lifetime (τs) of AZGSSe/TiO2 was found to be 18.92 ns. Then the rate constant (Keff) of the electron transfer is calculated to be 2.9 × 107 s−1 from the equation: where τ(AZGSSe/TiO2) is the average electron lifetime of AZGSSe/TiO2 and τ(AZGSSe QDs) is
  • the average electron lifetime of AZGSSe QDs [34]. Figure 6c shows the PL emission spectra of the AZGSSe/TiO2 NF-based photoanode in comparison with TiO2 NFs. It reveals that the PL intensity of AZGSSe/TiO2 NFs is quenched. This is due to the enhanced electron transfer from the conduction band of
  • AZGSSe QDs to TiO2 NFs with minimized charge recombination rate [35][36][37]. PV cell studies The electron transfer mechanism of the fabricated QDSC was examined by using impedance analysis. The impedance spectrum plotted in the form of a Nyquist plot (Figure 7) was fitted with the equivalent circuit
PDF
Album
Full Research Paper
Published 14 Nov 2022
Other Beilstein-Institut Open Science Activities