Search results

Search for "ultra high vacuum" in Full Text gives 102 result(s) in Beilstein Journal of Nanotechnology.

The role of the cantilever in Kelvin probe force microscopy measurements

  • George Elias,
  • Thilo Glatzel,
  • Ernst Meyer,
  • Alex Schwarzman,
  • Amir Boag and
  • Yossi Rosenwaks

Beilstein J. Nanotechnol. 2011, 2, 252–260, doi:10.3762/bjnano.2.29

Graphical Abstract
  • measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been
  • cantilever in general, and in high resolution ultra-high vacuum (UHV) KPFM measurements in particular, has not been reported. In this work we use the boundary element method (BEM) [7] to calculate the point spread function (PSF) of the measuring probe: Tip and cantilever. The probe PSF analysis shows that
  • showed that at smaller probe sample distances the homogenous force contribution of the tip apex is higher. At a probe–sample distance of 1.2 nm (a typical distance in ultra-high vacuum measurements) the tip apex contributes 83% to the homogenous force, the cone lower segment contributes 7.3%, and the
PDF
Album
Full Research Paper
Published 18 May 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • humidity), we have investigated how the nanomanipulation process is affected in ultra high vacuum (UHV) environment. The topography image in Figure 7 shows the gold particles on a silicon substrate after the sample was transferred into UHV without any further treatment, which could have changed the
  • deposited onto a silicon wafer. (a) Ordered organization as described in the Experimental section, (b) random distribution. Frame sizes: 3 µm and 1 µm, respectively. As-synthesized Au particles on silicon in ultra-high vacuum. Frame size: 3 µm. AFM image of nanopatterned surface exhibiting Si pits: Frame
PDF
Album
Full Research Paper
Published 04 Feb 2011
Other Beilstein-Institut Open Science Activities