Search results

Search for "Rh" in Full Text gives 130 result(s) in Beilstein Journal of Nanotechnology.

Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

  • Pauline Maffre,
  • Karin Nienhaus,
  • Faheem Amin,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2011, 2, 374–383, doi:10.3762/bjnano.2.43

Graphical Abstract
  • scale of diffusion, τD. Based on the well-known spatial extension of the observation volume, the diffusion coefficient, D, and, by using the Stokes–Einstein equation (see Experimental), the hydrodynamic radius of the fluorescent particle, RH, can be calculated. Consequently, a NP size increase due to
  • endowing the NPs with an overall negative charge and excellent colloidal stability [30]. To determine the affinity of the proteins to the NPs as well as the increase in RH, we took 2fFCS data on NPs freely diffusing in solutions, which contained the proteins at concentrations varying over several orders of
  • foci and the cross-correlation curve. Note that FCS data and, therefore, also the derived RH values, are averages determined from a few thousand single-particle bursts. The autocorrelation curves in Figure 1 display two decay processes. The step on the millisecond time scale is due to NP diffusion and
PDF
Album
Full Research Paper
Published 12 Jul 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • RH%, are presented and discussed. The dependency of the energy dissipation during the manipulation was particularly studied as a function of size, coating of particles, substrate and temperature. Finally, interpretation of the physico-chemical mechanisms involved at both interfaces – tip–particle and
  • the effect of functional (hydrophilic vs hydrophobic) molecules grafted on the Au nanoparticles on their mobility. In addition, we will address the important issue of environmental conditions (T, RH%), surface topography and tip scan velocities on the manipulation performance of gold nanoparticles
  • ) substrate [41][42][43]. As we can see here, the eventual role of relative humidity (RH%) which is an environmental parameter, strongly depends on the chemistry of the NP–substrate interface. Another environmental parameter, namely temperature, also affects the mobility of the nanoparticles. The influence of
PDF
Album
Full Research Paper
Published 04 Feb 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • measurements were made in air at 20–25% humidity. An environmental chamber of the microscope was used for studies in humid air (2% < RH < 95%, as measured by a humidity meter) and also for experiments in organic solvent vapors. One or two milliliters of water, methanol or toluene was injected into the
  • the images of the 7M3S blend obtained after the sample was exposed to high humidity (RH > 95%) overnight (Figure 8C). The surface potential image was unchanged but multiple droplets appeared inside the dimples in the topography image. Most likely these are due to condensed water droplets on
  • might suspect some environmental effects in our preliminary measurements at low humidity (3% RH) and in different gases (N2, Ar) as revealed by the the contrast variations. The humidity-induced changes are very noticeable and well as those caused by methanol and toluene vapors. These observations might
PDF
Album
Full Research Paper
Published 06 Jan 2011

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

  • W. Merlijn van Spengen,
  • Viviane Turq and
  • Joost W. M. Frenken

Beilstein J. Nanotechnol. 2010, 1, 163–171, doi:10.3762/bjnano.1.20

Graphical Abstract
  • normal force, while keeping the support position speed and environmental conditions constant. This resulted in a friction force that is more or less linear in the normal force, with a friction coefficient of 0.27 at a temperature of 27 °C and 25% RH (Figure 4). The fact that the friction force becomes
  • .; Frenken, J. W. M. Tribol. Lett. 2007, 28, 149–156.] Typical 1000-cycle-average friction loops obtained with the tribometer of Figure 1 [19], at 27 °C and a relative humidity (RH) of 30%. The sliding speed was constant at 5 µm/s. Support position 0 μm is where the loop was started every cycle. This loop is
PDF
Album
Full Research Paper
Published 22 Dec 2010

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • ferromagnetic metals [1][2][3][4]. More surprisingly, the study of small Rh NPs revealed a paramagnetic to ferromagnetic phase transition induced by size reduction for clusters containing less than 40 atoms [5]. Band structure calculations have investigated the role of size reduction and demonstrated that it
  • various temperatures between 293 K and 5 K, are shown in Figure 4. The measurements were performed with a 57Co source in a Rh matrix and were calibrated against bulk α-Fe. Upon decreasing the temperature, the spectrum progressively splits but still remains broad, even at the lowest temperature. Such
PDF
Album
Full Research Paper
Published 03 Dec 2010
Other Beilstein-Institut Open Science Activities